Previsão de aula: 20h30min às 22h00min
Início da aula: 20h39min
Término da aula: aproximadamente 21h45min
Taxa de aproveitamento: aproximadamente 73,33%
Observação: discussão social em sala de aula (tema: esmola)
Equação da reta normal
Seja y = f(x) uma curva e seja P(a, f(a)) um ponto sobre seu gráfico. A reta normal n ao gráfico de f no ponto P é a reta perpendicular à reta tangente (t).
Reta tangente (t) e reta normal (r) à tangente em um ponto de um gráfico, obtido com o Krita. |
Logo, a equação da reta normal ao gráfico de f em P é:
y - f(a) = -1/mt . (x - a)
Exemplo:
Determine a equação da reta tangente e a equação da reta normal ao gráfico de f(x) = x³ no ponto de abcissa a = -1.
[Res.]
Gráfico de f(x) = x³, obtido com o GeoGebra e o Krita. |
Encontrando o coeficiente angular no ponto com x igual a -1.
limh→0 [f(a+h) - f(a) / h]
= limh→0 [(a+h)³ - (a)³ / h]
= limh→0 [(a³ + 3a²h + 3ah² + h³ - a³) / h]
= limh→0 [(3a²h + 3ah² + h³) / h]
= limh→0 [h . (3a² + 3ah + h²) / h]
= limh→0 [3a² + 3ah + h²]
= 3a² + 0 + 0
= 3a²
Assim, quando x é igual a -1, o limite (que é o coeficiente angular da reta tangente no ponto) será:
3a² = 3 . (-1)² = 3 . 1 = 3 = mt
Obtendo a equação da reta tangente no ponto de abcissa a = -1:
y - y0 = m . (x - x0)
Como só temos o valor de x (abcissa) do ponto, será necessário calcular o valor de y:
y = x³ = (-1)³ = -1
Agora temos o ponto A(-1, -1). Assim:
y - (-1) = m . (x - (-1))
y + 1 = m . (x + 1)
y = m.x + m - 1
Como mt = 3:
y = 3 . x + 3 -1
y = 3x + 2
Logo, a equação da reta normal ao gráfico de f em A(-1, -1) é:
y - f(a) = -1/mt . (x - a)
y - (-1) = -1/(3) . (x - (-1))
y + 1 = -1/3 . (x + 1)
y + 1 = -x/3 -1/3
y = -x/3 -1/3 - 1
y = -x/3 - 4/3
y = (-x - 4) / 3
Velocidade média e velocidade instantânea:
Vm = ∆S / ∆T, onde:
∆S → posição
∆T → tempo
Exemplo:
Um automóvel deixa a cidade A à 1h, percorre uma estrada retilínea e chega à cidade B a 240km de A, às 4 horas.
Determine a velocidade média do automóvel durante este percurso.
Esquema de percurso de A até B (240km) em 3 horas, obtido com o Krita. |
[Res.]
Vm = ∆S / ∆T = (S1 - S0) / (T1 - T0) = (240 - 0) / (4 - 1) = 240 / 3 = 80 km/h
Esta é a velocidade que, se mantida constante, durante 3 horas, permite ao automóvel percorrer os 240km de A até B.
A velocidade média nada diz sobre a velocidade em um instante.
Por exemplo, às 2h o velocímetro do carro poderia registrar 60km/h ou 100km/h ou até mesmo estar marcando 0km/h, com o carro parado.
Se quisermos determinar a taxa à qual o automóvel está viajando às 2h, precisamos calcular sua velocidade instantânea.
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Nenhum comentário:
Postar um comentário