Relações de Trigonometria
Relações trigonométricas
sen x = 1 / cosec x
cos x = 1 / sec x
tan x = sen x / cos x = 1 / cot x
cosec x = 1 / sen x
sec x = 1 / cos x
cot x = cos x / sen x = 1 / tan x
Como seno, cosseno e tangente são bem conhecidas, podemos resumir mais:
Relações trigonométricas
cosec x = 1 / sen x
sec x = 1 / cos x
cot x = 1 / tg x
Como a cotangente é o inverso da tangente, e essa é uma relação fácil de lembrar, podemos reduzir ainda mais o resumo:
Relações trigonométricas
cosec x = 1 / sen x
sec x = 1 / cos x
Identidades trigonométricas
sen² x + cos² x = 1
1 + tg² x = sec² x
1 + cotg² x = cosec² x
sen² x = [1 - cos (2x)] / 2
cos² x = [1 + cos (2x)] / 2
sen (2x) = 2 . sen x . cos x
2 . sen x . cos y = sen (x - y) + sen (x + y)
2 . sen x . sen y = cos (x - y) - cos (x + y)
2 . cos x . cos y = cos (x - y) + cos (x + y)
1 ± sen x = 1 ± cos (𝜋/2 - x)
Derivadas
y = un ⇒ y' = n . un-1 . u' (regra básica)
y = u . v ⇒ y' = (regra do produto)
y = u / v ⇒ y' = (regra do quociente)
Derivadas para potências (são todas a mesma coisa - reflita)
y = au ⇒ y' = au . ln a . u', (a>0, a ≠ 1)
- y = eu ⇒ y' = eu . ln e . u' = eu . u'
Derivadas de logarítmos
y loga u ⇒ y' = u' / u . loga e
- Como loga e = ln e / ln a = 1 / ln a:
y loga u ⇒ y' = u' / u . loga e = u' / u . 1 / ln a = u' / (u . ln a)
Derivadas trigonométricas
y = sen u ⇒ y' = u' . cos u
y = cos u ⇒ y' = -u' . sen u
y = tg u ⇒ y' = u' . sec² u
y = cotg u ⇒ y' = -u' . sec² u
y = sec u ⇒ y' = u' . sec u . tg u
y = cosec u ⇒ y' = -u' . cosec u . cotg u
y = arcsen u ⇒ y' = u' / √(1 - u²)
y = arccos u ⇒ y' = -u / √(1 - u²)
y = arctg u ⇒ y' = u' / (1 + u²)
y = arccotg u ⇒ y' = -u' / (1 + u²)
y = arcsec u, |u| ≥ 1 ⇒ y' = u' / (|u| .√(u² - 1), |u| > 1
y = arccosec u, |u| ≥ 1 ⇒ y' = -u' / (|u| .√(u² - 1), |u| > 1
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Nenhum comentário:
Postar um comentário