Mostrando postagens com marcador Cálculo 1. Mostrar todas as postagens
Mostrando postagens com marcador Cálculo 1. Mostrar todas as postagens

quarta-feira, 29 de maio de 2019

Cálculo I - 29/05/2019

Cálculo I - 29/05/2019 (Quarta-feira)

Previsão de aula: 20h30min às 22h00min
Início da aula: 20h38min
Término da aula: 22h00min
Taxa de aproveitamento: 91,11%

Obs.: muito tempo gasto com texto no quadro. Até hoje não houve um vídeo ou slides na aula. Sugiro usar melhor os recursos multimídia disponíveis em sala de aula. Muito tempo parado durante a aula.


Taxas relacionadas

Suponha que duas variáveis x e y sejam funções de outra variável t.
x = f(t).
y = g(t).

Podemos interpretar as derivadas dx/dt e dy/dt como as taxas de variação em relação a t.

Digamos, por exemplo, que x e y estejam relacionados pela equação:
x³ + y² - 2x + 3y + 1 = 0.

Diferenciando a equação implicitamente em relação a t obtemos:
3x² dx/dt + 2y dy/dt + 2 dx/dt + 3 dy/dt = 0.

Esta equação estabelece uma relação entre dx/dt e dy/dt.

Conhecendo uma das taxas podemos usar a equação acima para determinar a outra taxa.

dx/dt e dy/dt são determinadas como taxas relacionadas.


Diretrizes para resolver os problemas de taxas relacionadas:
1) Desenhe a situação (se possível).
2) Dê nome às variáveis.
3) Identifique os dados do problema.
4) Encontre uma relação que relacione as variáveis.
5) Derive a equação encontrada implicitamente em relação a t.
6) Substitua os dados do problema.


Exemplos:
1) Está sendo bombeado ar para dentro de um balcão esférico e seu volume cresce a uma taxa de 100 cm³/s.

Quão rápido o raio do balão está crescendo quando este mede 25cm?

[Res.]
Esfera de raio r
Sabe-se:
dv/dt = 100cm³/s
r = 25cm
Vesfera = 4/3 . 𝜋 . r³
dr/dt = ?

Derivando o volume:
Vesfera = 4/3 . 𝜋 .r³
dv/dt = 4/3 . 𝜋 . 3r² . dr/dt
dv/dt = 4 . 𝜋 . r² . dr/dt

Como r = 25:
dv/dt = 4 . 𝜋 . 25² . dr/dt

Como dv/dt = 100cm³/s:
100 = 4 . 𝜋 . 25² . dr/dt
25 = 𝜋 . 25² . dr/dt 
25 / 25² = 𝜋 . dr/dt 
1 / 25 = 𝜋 . dr/dt
dr/dt = 1 / (25 . 𝜋) cm/s



2) Uma escada com 10 pés de comprimento está apoiada em uma parede vertical.
Se a base da escada desliza, afastando-se da parede a uma taxa de 1 pé/s, quão rápido o topo da escada está escorregando para baixo na parede quando a base da escada está a 6 pés da parede?

[Res.]
Escada de 10 pés de comprimento apoiada em uma parede
Sabe-se:
dx/dt = 1 pé/s
x = 6 pés
Tamanho da escada = 10 pés

No caso de uma parede aprumada:
Como trata-se de um triângulo retângulo (assumindo que a parede esteja no prumo), pode-se aplicar o teorema de pitágoras:
a² + b² = c², onde a e b são os catetos e c é a hipotenusa do triângulo retângulo.

No caso de uma parede inclinada:
Porém, caso considerássemos alguma inclinação da parede, o problema poderia ser solucionado com o teorema dos cossenos, que diz:

"Em qualquer triângulo, o quadrado de um dos lados corresponde à soma dos quadrados dos outros dois lados, menos o dobro do produto desses dois lados multiplicado pelo cosseno do ângulo entre eles."
Assim, seria:
a² = b² + c² - 2b . c . cos Â
b² = a² + c² - 2a . c . cos B
c² = a² + b² - 2a . b . cos C


Para nossa resolução, vamos assumir que a parede está aprumada. Assim:
x² + y² = 10²
Quando x = 6, y = 8:
6² + y² = 100
y² = 100- 36 = 64
y = ± 8
Como tamanho só pode ser positivo, y = 8.

Assim, quando x = 6, y = 8.

Derivando:
x² + y² = 10²
x² + y² = 100
2x . dx/dt + 2y . dy/dt = 0
2x . 1 + 2y . dy/dt = 0
2x + 2y . dy/dt = 0
2y . dy/dt = -2x

Como x = 6 e y = 8:
2 . 8 . dy/dt = -2 . 6
16 . dy/dt = -12
dy/dt = -12 / 16
dy/dt = -3 / 4 pé/s


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

terça-feira, 28 de maio de 2019

Cálculo I - 28/05/2019

Cálculo I - 28/05/2019 (Terça-feira)

Previsão de aula: 20h30min às 22h00min
Não houve aula - motivo saúde da professora
Taxa de aproveitamento: 0%

Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

sexta-feira, 24 de maio de 2019

Lembrete para prova de Cálculo 1

Lembrete para prova de Cálculo 1


Relações de Trigonometria
Relações trigonométricas
sen x = 1 / cosec x
cos x = 1 / sec x
tan x = sen x / cos x = 1 / cot x
cosec x = 1 / sen x
sec x = 1 / cos x
cot x = cos x / sen x = 1 / tan x

Como seno, cosseno e tangente são bem conhecidas, podemos resumir mais:
Relações trigonométricas
cosec x = 1 / sen x
sec x = 1 / cos x
cot x = 1 / tg x

Como a cotangente é o inverso da tangente, e essa é uma relação fácil de lembrar, podemos reduzir ainda mais o resumo:
Relações trigonométricas
cosec x = 1 / sen x
sec x = 1 / cos x

Identidades trigonométricas
sen² x + cos² x = 1
1 + tg² x = sec² x
1 + cotg² x = cosec² x
sen² x = [1 - cos (2x)] / 2
cos² x = [1 + cos (2x)] / 2
sen (2x) = 2 . sen x . cos x
2 . sen x . cos y = sen (x - y) + sen (x + y)
2 . sen x . sen y = cos (x - y) - cos (x + y)
2 . cos x . cos y = cos (x - y) + cos (x + y)
1 ± sen x = 1 ± cos (𝜋/2 - x)


Derivadas
Derivadas básicas
y = un ⇒ y' = n . un-1 . u' (regra básica)
y = u . v ⇒ y' = (regra do produto)
y = u / v ⇒ y' = (regra do quociente)

Derivadas para potências (são todas a mesma coisa - reflita)
y = au ⇒ y' = au . ln a . u', (a>0, a ≠ 1)
  • y = eu ⇒ y' = eu . ln e . u' = eu . u'
y = uv ⇒ y' = v . uv-1 . u' + uv . ln u . v'


Derivadas de logarítmos
y loga u ⇒ y' = u' / u . loga e
  • Como loga e = ln e / ln a = 1 / ln a:
    y loga u ⇒ y' = u' / u . loga e = u' / u . 1 / ln a = u' / (u . ln a)
y = ln u ⇒ y' = 1 / u . u'

Derivadas trigonométricas
y = sen u ⇒ y' = u' . cos u
y = cos u ⇒ y' = -u' . sen u
y = tg u ⇒ y' = u' . sec² u
y = cotg u ⇒ y' = -u' . sec² u
y = sec u ⇒ y' = u' . sec u . tg u
y = cosec u ⇒ y' = -u' . cosec u . cotg u
y = arcsen u ⇒ y' = u' / √(1 - u²)
y = arccos u ⇒ y' = -u  / √(1 - u²)
y = arctg u ⇒ y' = u' / (1 + u²)
y = arccotg u ⇒ y' = -u' / (1 + u²)
y = arcsec u, |u| ≥ 1 ⇒ y' = u' / (|u| .√(u² - 1), |u| > 1
y = arccosec u, |u| ≥ 1 ⇒ y' = -u' / (|u| .√(u² - 1), |u| > 1



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

quarta-feira, 22 de maio de 2019

Cálculo 1 - 22/05/2019

Cálculo 1 - 22/05/2019

Previsão de aula: 20h30min às 22h00min
Início da aula: 20h38min
Término da aula: 22h00min aproximadamente
Taxa de aproveitamento: 82min/90min = 91,11%


Exercícios:

Resolva as derivadas

a) y = elog(3x+1)

Resolução minha
y = elog(3x+1)


Aplicando ln nos termos

ln y = ln elog(3x+1)
ln y = log (3x+1) . ln e
ln y = log (3x+1) . 1
ln y = log (3x+1)


Derivando

1/y . dy/dx = 3/(3x+1) . log e . 3
dy/dx = y . [3/(3x+1) . log e] . 3
dy/dx = elog(3x+1) . [3/(3x+1) . log e] . 3
dy/dx = elog(3x+1) . [9/(3x+1) . log e]

Utilizando as seguintes regras de derivação:
y = ln u ⇒ y' = 1/u . u'
y = log u ⇒ y' = u'/u . loga e


Porém, a professora deseja a resposta obtida a partir das seguintes regras de derivação:
y = eu ⇒ y' = eu . u'
Como a função envolve log, também será necessária a seguinte regra de derivação:
y = loga u ⇒ y' = u'/u . loga e

y = elog(3x+1)
y' = y = elog(3x+1) . 3/(3x+1) . log10 e . 3
y' = y = elog(3x+1) . 9/(3x+1) . log10 e

Observação: o 3 no final é devido à regra da cadeia, da derivação do termo (3x+1).

Mais um adicional:
log10 e = 1/ ln 10

Assim:
y' = y = elog(3x+1) . 9/(3x+1) . log10 e  
y' = y = elog(3x+1) . 9/[(3x+1) . ln 10]

Essa era a forma de resposta esperada pela professora.


b) y = 5[2x² . sen(x)]

Resolução minha
Utilizando a seguinte regra de derivação:
y = uv ⇒ y' = v . uv-1 . u' + uv . (ln u) . v'

y = 5[2x² . sen(x)]

y' = [2x² . sen(x)] . 5[2x² . sen(x) - 1] . 0 + 5[2x² . sen(x)] . ln 5 . [4x . sen(x) + cos(x) . 2x²]
y' = 0 + 5[2x² . sen(x)] . ln 5 . [4x . sen(x) + cos(x) . 2x²]
y' = 5[2x² . sen(x)] . ln 5 . [4x . sen(x) + 2x² . cos(x)]


c) y³ + y = x

Resolução por derivação implícita.
3y² dy/dx + dy/dx = 1

dy/dx (3y² + 1) = 1

dy/dx = 1 / (3y² + 1)



d) y = arctg (2x/3) + arccotg (3/2x)

Resolução minha
Utilizando as seguintes regras de derivação:
y = arctg u ⇒ y' = +u' / (1 + u²)
y = arccotg u ⇒ y' = -u' / (1 + u²)


y = arctg (2x/3) + arccotg (3/2x)
y' = +(2/3) / (1 + 4x² / 9) + [-3/2 . (-1) . x-2] / [1 + 9/ (4x²)]
y' = +(2/3) / [(9 + 4x²) / 9] + [3/(2x²)] / [(4x² + 9)/ (4x²)]
y' = +(2/3) . 9 / (9 + 4x²) + 3/(2x²) . (4x²) / (4x² + 9)
y' = +6 / (9 + 4x²) + 6 / (4x² + 9)
y' = +12 / (9 + 4x²)


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

terça-feira, 21 de maio de 2019

Cálculo 1 - 21/05/2019

Cálculo 1 - 21/05/2019
Terça-feira

Previsão de aula: 20h30min às 22h00min
Início da aula: aproximadamente 20h30min
Encerramento: 22h00min
Taxa de aproveitamento: 100% aproximadamente


Exercícios

Resolva as derivadas abaixo:

a) y = sen(x) . cos(x)

Resolução minha:

y' = cos(x) . cos(x) + (-sen(x)) . sen(x)
y' = cos²(x) - sen²(x)


b) y = x³/3 . ln (x) - x³/9

Resolução minha:
y' = x² . ln(x) + 1/x . 1 . x³/3 - 1/3 . x²
y' = x² . ln(x) + x²/3 - x²/3
y' = x² . ln(x)


c) y = 8 . sen(x) . cos(x) . tg8(x) / √x

Resolução minha:

y = 8 . sen(x) . cos(x) . tg8(x) . x-1/2

1/y . dy/dx = 1/8 . 0 + 1/sen(x) . cos(x) + 1/cos(x) . (-sen(x)) + 8 . 1/tg(x) . 1 . sec²(x) - 1/2x . 1

1/y . dy/dx = cos(x)/sen(x) - sen(x)/cos(x) + 8 sec²(x)/tg(x) - 1/(2x)

dy/dx = 8 . sen(x) . cos(x) . tg8(x) / √x . {cotg(x) - tg(x) + 8 / [sen(x).cos(x)] - 1/(2x)}


2) Encontre:
∂f/∂x e ∂f/∂y

 f(x,y) = (x³ + y²) / (x² + y²)

Resolução minha:
∂f/∂x

∂f/∂x = [3x² . (x² + y²) - 2x . (x³ + y²)] / (x² + y²)²

∂f/∂x = [3x4 + 3x²y² - 2x4 - 2xy²] / (x² + y²)²

∂f/∂x = [x4 + 3x²y² - 2xy²] / (x² + y²)²


∂f/∂y

∂f/∂y = [2y . (x² + y²) - 2y . (x³ + y²)] / (x² + y²)²

∂f/∂y = [2x²y + 2y3 - 2yx³ - 2y³] / (x² + y²)²

∂f/∂y = [2x²y - 2yx³] / (x² + y²)²


3) Determine, caso existam, as assíntotas verticais e horizontais, usando limite.

f(x) = √(x² + 1) / (3x - 5)

Lembrando que:
* assíntota vertical ocorre quando o denominador = 0.
* assíntotas horizontais tem que aplicar o limite para ∞ e para -∞.

Resolução minha:

Material de apoio para resolução da questão:
http://www.alessandrosantos.com.br/emanuel/usp/calculo1/Assintota.PDF

Assíntota vertical
Igualando o denominador 3x-5 a 0:
3x-5 = 0
x = 5/3

Calculando o limite para x igual a 5/3 pela direita:
limx→5/3+ √(x² + 1) / (3x - 5) = +∞


Calculando o limite para x igual a 5/3 pela esquerda:
limx→5/3- √(x² + 1) / (3x - 5) = -∞

Como os limites da função pela esquerda e pela direita com x tendendo a 5/3 foram para o infinito positivo e negativo, podemos concluir que x = 5/3 é uma assíntota vertical da função.


Assíntota horizontal
Para encontrar a assíntota horizontal é necessário verificar o comportamento da função quando ela tende a +∞ e a -∞.

Calculando os limites quando a função tende a +∞ e a -∞:
f(x) = √(x² + 1) / (3x - 5)

Do jeito que está, é difícil calcular o limite da função. Modificando a função para facilitar as operações:
f(x) = √(x² + 1) / (3x - 5)
f(x) = √[x²(1 + 1/x²)] / [x(3 - 5/x)]
f(x) = ± x√(1 + 1/x²) / [x(3 - 5/x)]
f(x) = ± √(1 + 1/x²) / (3 - 5/x)


Calculando os limites quando a função tende a +∞:
limx→+ √(x² + 1) / (3x - 5)
= limx→+ √[x²(1 + 1/x²)] / [x(3 - 5/x)]
= limx→+ ± x√(1 + 1/x²) / [x(3 - 5/x)]
= limx→+ ± √(1 + 1/x²) / (3 - 5/x) = ± 1/3


Calculando os limites quando a função tende a -∞:
limx→- √(x² + 1) / (3x - 5)
= limx→- √[x²(1 + 1/x²)] / [x(3 - 5/x)]
= limx→- ± x√(1 + 1/x²) / [x(3 - 5/x)]
= limx→- ± √(1 + 1/x²) / (3 - 5/x) = ± 1/3

A partir dos limites calculados, é possível observar que a função apresenta duas assíntotas horizontais:
y = 1/3 e y = -1/3.

Gráfico da função √(x² + 1) / (3x - 5) obtido com o GeoGebra


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

segunda-feira, 20 de maio de 2019

Me Salva! DER21 - Esboço de gráficos: Exemplo completo I



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER20 - Derivadas: como esboçar gráficos passo a passo



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - 04 segunda deriv extremos



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER18 - Derivada Segunda



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER16 - Máximos e mínimos relativos - Exemplo I



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER14 - Derivada primeira



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - otim 4



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - otim 3



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - otim 1



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

domingo, 19 de maio de 2019

Cálculo I - 9 lhospital exemplos revisar



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - 2 teorema valor extremo certo revisar



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

sábado, 18 de maio de 2019

Cálculo I - 3 extremo local



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - 1 extremo absoluto revisar



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

sexta-feira, 17 de maio de 2019

3ª Progressão de Aprendizagem de Cálculo 1 - 17/05/2019

3ª Progressão de Aprendizagem de Cálculo 1 - 17/05/2019

Questão 1 (resolvida)
Determine uma equação para a tangente à curva da função y = 4 - x² no ponto P(-1,3) e, em seguida, esboce a curva e a tangente em um único gráfico.

[Res.]
Encontrando a tangente. Primeiro vamos encontrar a inclinação da reta.
Como y = 4 - x², a inclinação será:
y' = -2 . x

Sabendo que a reta passa pelo ponto P(-1,3), vamos encontrar a inclinação da curva no ponto x = -1:
y' = -2 . x
y' = -2 . (-1)
y' = 2

Sabendo que a equação da reta é do tipo y = ax + b, e sabendo que a = 2:
y = ax + b
y = 2x + b

Substituindo os valores de P(-1,3) na equação da reta:
y = 2x + b
3 = 2(-1) + b
3 = -2 + b
5 = b

Assim, a equação da reta fica:
y = 2x + 5

Esboço do gráfico:
Gráfico das funções obtido com o auxílio do GeoGebra


Questão 2
Derive as seguintes funções:

Lembrete para resolver as questões:
  • Seno
    • sen x = cos (π/2 - x) = 1 / csc x
  • Cosseno
    • cos x = sen (π/2 - x) = 1 / sec x
  • Tangente
    • tan x = sen x / cos x = cot (π/2 - x) = 1 / cot x
  • Cossecante
    • csc x = sec (π/2 - x) = 1 / sen x
  • Secante
    • sec x = csc (π/2 - x) = 1 / cos x
  • Cotangente
    • cot x = cos x / sen x = tan (π/2 - x) = 1 / tan x
Resumindo:
  • Sen x = 1 / csc x
  • Cos x = 1 / sec x
  • Tan x = sen x / cos x = 1 / cot x
  • Csc x = 1 / sen x
  • Sec x = 1 / cos x
  • Cot x = cos x / sen x = 1 / tan x
Fonte: https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_trigonom%C3%A9trica


a) y = ln [sec (x) + tan (x)]

[Res.]

Seguindo as regras de derivação:
y = ln u ⇒ y' = 1/u . u'
y = sec u ⇒ y' = u' . sec(u) . tg (u)
y = tg u ⇒ y' = u' . sec²(u)

Derivando:
y = ln [sec (x) + tan (x)]
y' = 1 / [sec (x) + tan (x)] . [1/x . tg(x) + 1 . sec²(x)]
y' = 1 / [sec (x) + tan (x)] . [1/x . tg(x) + sec²(x)]


b) y = cot (x) / [1 + csc (x)]

[Res.]

Seguindo as regras de derivação:
y = cot u ⇒ y' = -u' . cosec² u
y = csc u ⇒ y' = -u' . cosec u . cotg u
y = u / v ⇒ y' = (u' . v - v' . u) / v²

Derivando:
y = cot (x) / [1 + csc (x)]

y' = {[-1 . cosec² (x)] . [1 + cosec (x)] - [0 + (-1) . cosec (x) . cotg (x)] . [cotg (x)]} / [1 + cosec (x)]²
y' = {[-1 . cosec² (x)] . [1 + cosec (x)] + [cosec (x) . cotg² (x)]} / [1 + cosec (x)]²
y' = {- cosec² (x) . [1 + cosec (x)] + [cosec (x) . cotg² (x)]} / [1 + cosec (x)]²
y' = {- cosec² (x) - cosec³ (x)] + [cosec (x) . cotg² (x)]} / [1 + cosec (x)]²
y' = {- cosec² (x) - cosec³ (x)] + [1/sen (x) . cos² (x)/sen² (x)]} / [1 + cosec (x)]² 
y' = {- cosec² (x) - cosec³ (x)] + [cos² (x)/sen³ (x)]} / [1 + cosec (x)]²


c) y = 8x + log2 x

[Res.]

Seguindo as regras de derivação:
y = uv ⇒ y' = v . uv-1 . u' + uv . ln (u) . v'
y = loga u ⇒ y' = u' / u . loga e

Derivando
y = 8x + log2 x

y' = x . 88-1 . 0 + 8x . ln (8) . 1 + 1/x . log2 e

Como log2 e = ln e / ln 2 = 1 / ln 2, temos:
y' = x . 88-1 . 0 + 8x . ln (8) . 1 + 1/x . (1 / ln 2)
y' = x . 88-1 . 0 + 8x . ln (8) . 1 + 1/(x . ln 2)
y' = x . 87 . 0 + 8x . ln (8) . 1 + 1/(x . ln 2)
y' = 0 + 8x . ln (8) . 1 + 1/(x . ln 2)
y' = 8x . ln (8) . 1 + 1/(x . ln 2)
y' = 8x . ln (8) + 1/(x . ln 2)

d) y³ + y = x

[Res.]

Resolver por derivação implicita

y³ + y = x

3y² . dy/dx + 1 . dy/dx = 1
dy/dx (3y² + 1) = 1
dy/dx = 1 / (3y² + 1)


e) y = ∛arcsen (x)

[Res.]

Seguindo as regras de derivação:
y = ln u ⇒ y' = 1/u . u'
y = arcsen u ⇒ y' = u' / √(1 - u²)


Ajustando a equação:
y = ∛arcsen (x)
y = [arcsen (x)]1/3
ln y = ln [arcsen (x)]1/3
ln y = 1/3 . ln [arcsen (x)]


Derivando:
1/y . dy/dx = 1/3 . 1/[arcsen (x)] . 1 / √(1 - x²)
dy/dx = ∛arcsen (x) . 1/3 . 1/[arcsen (x)] . 1 / √(1 - x²)
dy/dx = ∛arcsen (x) . 1/{3 . [arcsen (x)] . √(1 - x²)}


Questão 3 (resolvida)
Seja y = x . e-2x. Verifique que d2y/dx2 + 4 dy/dx + 4 y = 0.

[Res.]
Calculando dy/dx:
y = x . e-2x
ln y = ln (x . e-2x)
ln y = ln x + ln e-2x
ln y = ln x + (-2x) . ln e
ln y = ln x - 2x . 1
ln y = ln x - 2x

d/dx ln y = d/dx (ln x - 2x)

1/y . dy/dxd/dx ln x - d/dx 2x
1/y . dy/dx = 1/x - 2
dy/dx = y . (1/x - 2)
dy/dx = x . e-2x . (1/x - 2)
dy/dx = e-2x - 2x . e-2x


Calculando d2y/dx2:

dy/dx = e-2x - 2x . e-2x
d2y/dx2 = dy/dx (e-2x - 2x . e-2x)
d2y/dx2 = dy/dx e-2x - dy/dx (2x . e-2x)
d2y/dx2 = e-2x . (-2) - [2. e-2x + e-2x . (-2) . 2x]
d2y/dx2 = -2 . e-2x - 2. e-2x + 4x . e-2x
d2y/dx2 = -4 . e-2x + 4x . e-2x


Verificando que d2y/dx2 + 4 dy/dx + 4 y = 0.

d2y/dx2 + 4 dy/dx + 4 y = 0
-4 . e-2x + 4x . e-2x + 4 . (e-2x - 2x . e-2x) + 4 . (x . e-2x) = 0
-4 . e-2x + 4x . e-2x + 4 e-2x - 8x . e-2x + 4 . x . e-2x = 0
-4 . e-2x + 4x . e-2x + 4 e-2x - 8x . e-2x + 4x . e-2x = 0
-4 . e-2x + 8x . e-2x + 4 e-2x - 8x . e-2x = 0
-4 . e-2x + 8x . e-2x + 4 e-2x - 8x . e-2x = 0
-4 . e-2x + 4 e-2x = 0
-4 . e-2x + 4 e-2x = 0
0 = 0


Porém, a professora solicitou a resolução pela regra do produto:
y = u . v ⇒ y' = u' . v + v' . u

Também será necessário utilizar a seguinte regra para resolver pela regra do produto:
y = eu ⇒ y' = eu . u'

Derivando
Para encontrar dy/dx
y = x . e-2x
y' = 1 . e-2x + e-2x . (-2) . x
y' = e-2x - 2 . x . e-2x
y' = e-2x - 2x . e-2x

Para encontrar d²y/dx²
y' = e-2x . (-2) - 2 . [1 . e-2x + e-2x  . (-2) . x]
y'' = -2 . e-2x - 2 . e-2x + 4 . x . e-2x
y'' = -4 . e-2x + 4x . e-2x


Conferindo a equação
d2y/dx2 + 4 dy/dx + 4 y = 0
-4 . e-2x + 4x . e-2x + 4 . (e-2x - 2x . e-2x) + 4 . (x . e-2x) = 0
-4 . e-2x + 4x . e-2x + 4 . e-2x - 8x . e-2x + 4 . x . e-2x = 0
-4 . e-2x + 4x . e-2x + 4 . e-2x - 8x . e-2x + 4 . x . e-2x = 0
0 + 4x . e-2x + 0 - 8x . e-2x + 4 . x . e-2x = 0
8x . e-2x - 8x . e-2x = 0
8x . e-2x - 8x . e-2x = 0
0 - 0 = 0
0 = 0


Questão 4 (resolvida)
Se f(x) = x1/2 . (x² + x - 2), determine:

a) f '(x)

[Res.]
f(x) = x1/2 . (x² + x - 2)
y = x1/2 . (x² + x - 2)

Aplicando ln aos termos:
ln y = ln [x1/2 . (x² + x - 2)]
ln y = ln x1/2 + ln (x² + x - 2)
ln y = 1/2 . ln x + ln (x² + x - 2)

Derivando:
d/dx ln y = d/dx 1/2 . ln x + d/dx ln (x² + x - 2)
1/y dy/dx = 1/2 . 1/x + 1 / (x² + x - 2) . (2x + 1)
1/y dy/dx = 1/(2x) + 1 / (x² + x - 2) . (2x + 1)
1/y dy/dx = 1/(2x) + 1 / [(x - 1) (x + 2)] . (2x + 1)
1/y dy/dx =  [(x - 1) (x + 2) + 2x ] / [(2x) . (x - 1) . (x + 2)]

dy/dx = x1/2 . (x² + x - 2) . [(x - 1) (x + 2) + 2x ] / [(2x) . (x - 1) . (x + 2)]
dy/dx = x1/2 . [(x - 1) . (x + 2)] . [(x - 1) (x + 2) + 2x ] / [(2x) . (x - 1) . (x + 2)]
dy/dx = x1/2 . [(x - 1) (x + 2) + 2x ] / (2x)
dy/dx = x1/2 . (x² + x - 2 + 2x ) / (2x)
dy/dx = x1/2 . (x² + 3x - 2) / (2x)


b) Os pontos em que a tangente de f é horizontal.

[Res.]
Para a tangente de f ser horizontal, a inclinação deve ser igual a 0.
Assim:
x1/2 . (x² + 3x - 2) / (2x) = 0
x1/2 .[(x - 1) (x + 2) + 2x ] / (2x) = 0

x = 0

ou

(x - 1) (x + 2) + 2x = 0
x² + 3x - 2 = 0
x = [-3 ± √(9 - 4.1.(-2))] / (2 . 1)
x = [-3 ± √(9 + 8)] / 2
x = (-3 ± √17) / 2

S = [0, (-3 + √17) / 2, (-3 - √17) / 2]


Questão 5 (resolvida)
Em que ponto sobre a curva y = ex temos a tangente paralela à reta y = 2x?

[Res.]

Derivando y = ex:
y' = ex
ln y = ln ex
ln y = x . ln e
d/dx ln y = d/dx (x . ln e)
1/y . dy/dx = ln e
dy/dx = y . ln e
dy/dx = ex . ln e = ex


Para as retas serem paralelas, a inclinação das retas deve ser a mesma. Assim, basta igualar a derivada de y = ex com a derivada de y = 2x.
Como visto anteriormente:
Para y = ex, y' = ex

Agora, para y = 2x, y' = 2.

Basta, então, igualar ex a 2.
ex = 2.
ln ex = ln 2
x . ln e = ln 2
x . 1 = ln 2
x = ln 2

Como ln 2 = 0,6931471..., x = 0,6931471...


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo 1 - 17/05/2019

Cálculo 1 - 17/05/2019

Previsão de aula: 18h45min às 20h15min
Início da aula: cheguei às 19h00min com a aula já iniciada
Encerramento da aula: 20h16min
Taxa de aproveitamento: 76 min / 90 min = 84,4%

Sugestão minha para melhoria das aulas: utilizar monitores da disciplina para preparar o ambiente de aula (slides, cópias para alunos, etc.). Ou estagiários de nível médio.


Diferenciação logaritmica

Usamos este método para simplificar o cálculo de derivadas "complicadas".
Dada uma função y = f(x), para calcular sua derivada procede-se da seguinte maneira:
1- Tome o logaritmo natural em ambos os lados da equação y = f(x) e use as leis do logaritmo para simplificar a expressão resultante.
2 - Diferencie implicitamente essa expressão em relação a x.
3 - Resolva a equação resultante para y'.


Exemplo:


1) Determine dy/dx para y = xx, com x > 0.

y = xx ∴ ln y = ln xx ∴ ln y = x . ln x

Logo,
d/dx (ln y) = d/dx (x . ln x)
1/y . dy/dx = ln x + x . 1/x

dy/dx = y (ln x + 1)

dy/dx = x² (ln x + 1)


2) Diferencie y = (5x - 4)³ / √(2x + 1)

ln y = ln [(5x-4)³ / √(2x + 1)]
ln y = ln (5x-4)³ - ln √(2x + 1)
ln y = 3 . ln (5x-4) - 1/2 . ln (2x + 1)
d/dx ln y = d/dx 3 . ln (5x-4) - d/dx 1/2 . ln (2x + 1)
1/y . dy/dx = 3 . 1/(5x - 4) . 5 - 1/2 . 1/(2x + 1) . 2
1/y . dy/dx = 15 /(5x - 4) - (2x + 1)
dy/dx = y . [15 /(5x - 4) - (2x + 1)]
dy/dx = [(5x - 4)³ / √(2x + 1)] . [15 /(5x - 4) - (2x + 1)]




Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

P!nk - Try (Lyrics)