sexta-feira, 26 de abril de 2019

Cálculo 1 - 26/04/2019

Cálculo 1 - 26/04/2019

Previsão de aula: 18h45min 20h15min
Início da aula: 18h52min
Encerramento: 20h15min
Taxa de aproveitamento: 83min / 90min = 92,22%


Exercícios:
Use a derivada via limite para calcular a derivada da função:

a) f(x) = 4 - √(x + 3)

limh→0 [f(x+h) - f(x)] / h

limh→0 {4 - √(x + h + 3) - [4 - √(x + 3)]} / h
limh→0 [- √(x + h + 3) + √(x + 3)] / h

limh→0 [√(x + 3) - √(x + h + 3)] / h . [√(x + 3) + √(x + h + 3)] / [√(x + 3) + √(x + h + 3)]
limh→0 [x + 3 - (x + h + 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 -h / {h . [√(x + 3) + √(x + h + 3)]} = -1 / [√(x + 3) + √(x + 3)]
= -1 / [2√(x + 3)]


b) f(x) = (x + 1) / (2 - x)

[Res.]
limh→0 [f(x+h) - f(x)] / h

limh→0 [(x + h + 1) / (2 - x - h) - (x + 1) / (2 - x)] / h

limh→0 [(x + h + 1) . (2 - x) - (x + 1) . (2 - x - h)] / [(2 - x - h) . (2 - x)] / h

limh→0 [2x - x² + 2h - xh + 2 - x - (2x - x² - xh + 2 - x - h)] / [h . (4 - 2x - 2x + x² - 2h + xh)]

limh→0 (3h) / [h . (4 - 2x - 2x + x² - 2h + xh)]

limh→0 3 / [(2-x)² - h . (2 - x)] = 3 / (2 - x)²


c) f(x) = cos (3x)

[Res.]

limh→0 [f(x+h) - f(x)] / h


Como f(x) trata-se de cos(3x):

limh→0 {cos [3 (x + h)] - cos (3x)} / h
limh→0 [cos (3x + 3h) - cos (3x)] / h

Utilizando a seguinte relação trigonométrica:
cos (A + B) = cos (A) . cos (B) - sen (A) . sen (B)

Encontra-se:
limh→0 [(cos (3x) . cos (3h) - sen (3x) . sen (3h) - cos (3x)] / h

Desenvolvendo:
limh→0 [(cos (3x) . cos (3h) - sen (3x) . sen (3h)) - cos (3x)] / h
limh→0 [cos (3x) . (cos (3h) - 1) - sen (3x) . sen (3h)] / h


Utilizando as seguintes relações trigonométrica de limites:

limh→0 [(cos (h) - 1) / h] = 0 e limh→0 [sen (h) / h] =1

Encontra-se:
limh→0 [cos (3x) . (cos (3h) - 1) - sen (3x) . sen (3h)] / h
= limh→0 [cos (3x) . (cos (3h) - 1) / h  - sen (3x) . sen (3h) / h]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3 . h)  - 3. sen (3x) . sen (3h) / (3 . h)]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3h)  - 3. sen (3x) . sen (3h) / (3h)]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3h)  - 3. sen (3x) . sen (3h) / (3h)]
= limh→0 [3 . cos (3x)] . limh→0 [ (cos (3h) - 1) / (3h)]  - limh→0 [3. sen (3x)] . limh→0 [sen (3h) / (3h)]
= limh→0 [3 . cos (3x)] . 0  - limh→0 [3. sen (3x)] . 1
= 0 - limh→0 [3. sen (3x)]
= - limh→0 [3. sen (3x)]
= - 3 . limh→0 [sen (3x)]
= - 3 . 0
= 0

referência consultada:
<http://mtm.ufsc.br/~azeredo/calculos/Acalculo/x/limderiv/solu/DefDerSol.html#SOLUTION%206>


d) f(x) = 5x² - 3x + 7

[Res.]

limh→0 [f(x+h) - f(x)] / h
limh→0 {[5(x+h)² - 3(x+h) + 7] - (5x² - 3x + 7)} / h
limh→0 {[5(x² + 2 xh + h²) - 3x - 3h + 7] - 5x² + 3x - 7} / h
limh→0 {[5x² + 10 xh + 5h² - 3x - 3h + 7] - 5x² + 3x - 7} / h
limh→0 {5x² + 10 xh + 5h² - 3x - 3h + 7 - 5x² + 3x - 7} / h
limh→0 {5x² + 10 xh + 5h² - 3x - 3h + 7 - 5x² + 3x - 7} / h
limh→0 {10 xh + 5h² - 3h} / h
limh→0 h(10 x + 5h - 3) / h
limh→0 10x + 5h - 3 = 10x + 5 . 0 - 3 = 10x - 0 - 3 = 10x - 3


e) f(x) = 2x . ex + 3x (resolução pendente)

[Res.]

limh→0 [f(x+h) - f(x)] / h
limh→0 [2(x+h) . e(x+h) + 3(x+h) - (2x . ex + 3x)] / h
limh→0 [2(x+h) . ex . eh + 3x + 3h - 2x . ex - 3x] / h
limh→0 [2x . ex . eh + 2h . ex . eh + 3h - 2x . ex] / h
limh→0 [2x . ex . (eh - 1) + h . (2 . ex . eh + 3)] / h

limh→0 [2x . ex . (eh - 1)] / h + limh→0 [h . (2 . ex . eh + 3)] / h
limh→0 [2x . ex . (eh - 1)] / h + limh→0 (2 . ex . eh + 3)

Como é o h que está em evidência no limite:
limh→0 [2x . ex . (eh - 1)] / h + limh→0 (2 . ex . eh + 3)

Existe um limite fundamental que podemos aplicar aqui (conforme a fonte consultada, citada abaixo):

limx→0 [(ax - 1) / x] = ln a.

Utilizando o limite fundamental, podemos continuar:
2x . ex . limh→0 [(eh - 1)] / h + limh→0 (2 . ex . eh + 3)

2x . ex . ln (e) + 2 . ex . e0 + 3
2x . ex . 1 + 2 . ex . 1 + 3
2x . ex + 2 . ex + 3


Fonte consultada: https://www.dicasdecalculo.com.br/resolvendo-derivadas-usando-a-definicao/
Gabarito: 2x. e^x + 2e^x + 3


Exercício - lista disponível na plataforma ESO

Questão 1)
Calcule a derivada da função dada usando definição de limites
a) f(x) = 3
b) f(x) = -5x
c) f(x) = 3 + 2/3 . x
d) f(x) = 2 . x² + x - 1
e) f(x) = x³ - 12x
f) f(x) = 1 / (x - 1)
g) f(x) = √(x + 1)
h) f(x) = (2 + x) / (3 - x)
i) f(x) = x1/3
j) f(x) = 4 - √(x + 3)
k) f(x) = (2 + x) / (9 - x)


Gabarito
a) 0
b) -5
c) 2/3
d) 4x + 1
e) 3x² - 12
f) -1 / (x - 1)²
g) 1/ (2 . √(x + 1))
h) 5 / (3 - x)²
i) 1 / 3x2/3
j) -1 / [2 . √(x + 3)]
k) 11 / (9 - x)²


Resoluções:
a) f(x) = 3

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [3 - 3] / h
limh→0 0 / h
limh→0 0 = 0 


b) f(x) = -5x

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [-5(x + h) - (-5x)] / h
limh→0 [-5x - 5h + 5x] / h
limh→0 [- 5h] / h
limh→0 - 5 = -5 



c) f(x) = 3 + 2/3 . x

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [3 + 2/3 . (x+h) - (3 + 2/3 . x)] / h
limh→0 [3 + 2/3 . x + 2/3 . h - 3 - 2/3 . x] / h
limh→0 [2/3 . h] / h
limh→0 2/3 = 2/3



d) f(x) = 2 . x² + x - 1

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [2 . (x+h)² + (x+h) - 1 - (2 . x² + x - 1)] / h
limh→0 [2 . (x² + 2xh + h²) + (x + h) - 1 - (2 . x² + x - 1)] / h 
limh→0 [2x² + 4xh + 2h² + x + h - 1 - 2x² - x + 1] / h
limh→0 [4xh + 2h² + h] / h
limh→0 h(4x + 2h + 1) / h
limh→0 4x + 2h + 1 = 4x + 2.0 + 1 = 4x + 1


e) f(x) = x³ - 12x

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(x+h)³ - 12(x+h) - (x³ - 12x)] / h
limh→0 [x³ + 3x²h + 3xh² + h³ - 12x -12h - x³ + 12x] / h
limh→0 [3x²h + 3xh² + h³ - 12h] / h
limh→0 h(3x² + 3xh + h² - 12) / h
limh→0 3x² + 3xh + h² - 12 = 3x² + 3x . 0 + 0² - 12 = 3x² - 12


f) f(x) = 1 / (x - 1)

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [1 / ((x+h) - 1) - (1 / (x - 1))] / h
limh→0 [1 / (x + h - 1) - (1 / (x - 1))] / h

limh→0 [(x - 1) - (x + h - 1)] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 [x - 1 - x - h + 1] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 [- h] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 - 1 / [(x + h - 1) . (x - 1)]
limh→0 - 1 / [x² - x + xh - h -x + 1]
limh→0 - 1 / [x² - 2x + xh - h + 1] = - 1 / [x² - 2x + x . 0 - 0 + 1]
= - 1 / [x² - 2x + 1] = -1 / (x - 1)²


g) f(x) = √(x + 1)

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [√((x+h) + 1) - (√(x + 1))] / h
limh→0 [√(x + h + 1) - (√(x + 1))] / h
limh→0 [√(x + h + 1) - (√(x + 1))] / h . [√(x + h + 1) + (√(x + 1))] / [√(x + h + 1) + (√(x + 1))]
limh→0 [(x + h + 1) - (x + 1)] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 [x + h + 1 - x - 1] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 [h] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 1 / [√(x + h + 1) + √(x + 1)]
= 1 / [√(x + 0 + 1) + (√(x + 1))]
= 1 / [√(x + 1) + √(x + 1)]
 = 1 / [2√(x + 1)]


h) f(x) = (2 + x) / (3 - x)

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(2 + (x+h)) / (3 - (x+h)) - ((2 + x) / (3 - x))] / h
limh→0 {[(2 + x + h) / (3 - x - h)] - [(2 + x) / (3 - x)]} / h
limh→0 {[(2 + x + h) . (3 - x) - (2 + x) . (3 - x - h)] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[6 - 2x + 3x - x² + 3h - xh - (6 - 2x - 2h + 3x - x² - xh)] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[6 - 2x + 3x - x² + 3h - xh - 6 + 2x + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[-2x + 3x - x² + 3h - xh + 2x + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3x - x² + 3h - xh + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[- x² + 3h - xh + 2h + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3h - xh + 2h + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3h + 2h] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[5h] / [(3 - x - h) . (3 - x)]} / h
limh→0 5 / [(3 - x - h) . (3 - x)]
= 5 / [(3 - x - 0) . (3 - x)]
= 5 / [(3 - x) . (3 - x)]
= 5 / (3 - x)²


i) f(x) = x1/3
[Res.]
limh→0 [f(x+h) - f(x)] / h

limh→0 [(x+h)1/3 - (x)1/3] / h

Note que (A - B) pode ser escrito como a diferença entre cubos:
A - B
= (A1/3)3 - (B1/3)3
= (A1/3 - B1/3) . (A2/3 + A1/3 . B1/3 + B2/3)
= (A3/3 + A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B3/3)
= (A + A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B)
= (A + A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B)
= (A + A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B)
= A - B

Desenvolvendo:
limh→0 [(x+h)1/3 - (x)1/3] / h
Seja:
A = x + h
B = x
limh→0 [(A)1/3 - (B)1/3] / h . (A2/3 + A1/3 . B1/3 + B2/3) / (A2/3 + A1/3 . B1/3 + B2/3)
= limh→0 {[(A)1/3 - (B)1/3] . (A2/3 + A1/3 . B1/3 + B2/3)} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
= limh→0 {A - B} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
Assim:
= limh→0 {A - B} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
= limh→0 {(x + h) - x} / [h . ((x + h)2/3 + (x + h)1/3 . x1/3 + x2/3)]
= limh→0 {h} / [h . ((x + h)2/3 + (x + h)1/3 . x1/3 + x2/3)]
= limh→0 1 / [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]

Calculando o limite:
= limh→0 1 / [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]
= limh→0 1 / {limh→0 [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]}
= 1 / {limh→0 [(x + h)2/3] + limh→0 [(x + h)1/3] . limh→0 [x1/3] + limh→0 [x2/3]}

= 1 / [(x + 0)2/3 + (x + 0)1/3 . x1/3 + x2/3]
= 1 / [x2/3 + x1/3 . x1/3 + x2/3]
= 1 / [x2/3 + x2/3 + x2/3]
= 1 / [3 . x2/3]


Referências consultadas:
<http://mtm.ufsc.br/~azeredo/calculos/Acalculo/x/limderiv/solu/DefDerSol.html#SOLUTION%205>
<https://brasilescola.uol.com.br/matematica/diferenca-dois-cubos.htm>


j) f(x) = 4 - √(x + 3)

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [4 - √((x+h) + 3) - (4 - √(x + 3))] / h
limh→0 [4 - √(x + h + 3) - 4 + √(x + 3)] / h
limh→0 [√(x + 3) - √(x + h + 3)] / h
limh→0 [√(x + 3) - √(x + h + 3)] / h  . [√(x + 3) + √(x + h + 3)] / [√(x + 3) + √(x + h + 3)]
limh→0 [(x + 3) - (x + h + 3)] / h  . 1 / [√(x + 3) + √(x + h + 3)]
limh→0 [(x + 3) - (x + h + 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 [x + 3 - x - h - 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 [- h] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 -1 / [√(x + 3) + √(x + h + 3)]
= -1 / [√(x + 3) + √(x + 0 + 3)]
= -1 / [√(x + 3) + √(x + 3)]
= -1 / [2 . √(x + 3)]



k) f(x) = (2 + x) / (9 - x)

[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(2 + (x+h)) / (9 - (x+h)) - ((2 + x) / (9 - x))] / h
limh→0 [(2 + x + h) / (9 - x - h) - ((2 + x) / (9 - x))] / h
limh→0 {[(2 + x + h) . (9 - x) - (2 + x) . (9 - x - h)] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[18 - 2x + 9x - x² + 9h - xh - (18 - 2x - 2h +9 x - x² - xh)] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[18 - 2x + 9x - x² + 9h - xh - 18 + 2x + 2h - 9x + x² + xh] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[9h + 2h] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[11h] / [(9 - x - h) . (9 - x)]} / h
limh→0 11h / [(9 - x - h) . (9 - x)] . 1/ h
limh→0 11h / [h . (9 - x - h) . (9 - x)]
limh→0 11 / [(9 - x - h) . (9 - x)]
= 11 / [(9 - x - 0) . (9 - x)]
= 11 / [(9 - x) . (9 - x)]
= 11 / (9 - x)²



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

quinta-feira, 25 de abril de 2019

A great big world - Say something. (Tradução)



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Grampeador e pinador elétrico Vonder...



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

quarta-feira, 24 de abril de 2019

Cálculo I - 24/04/2019

Cálculo I - 24/04/2019 (Quarta-feira)

Previsão de aula: 20h30min às 22h00min
Início da aula: 20h38min
Término da aula: 21h50min
Taxa de aproveitamento: 80,0%


Taxa instantânea de variação
ym = ∆y / ∆x = [f(a + h) - f(a)] / h

A taxa instantânea de variação de y = f(x) em relação a x em "a" é:
ya = ∆y / ∆x = [f(a + h) - f(a)] / h

Se a variável independente é o tempo t e y = s(t) é a posição em uma reta coordenada, então:

* velocidade média é a taxa média de variação de s em relação a t em um instante de tempo.

* velocidade instantânea é a taxa de variação de s em relação a t no instante t = a.


Exemplo:

A voltagem de curto circuito elétrico é de 100 volts. Se a corrente (em amperes) é I e a resistência (em ohms) é R, então, pela Lei de Ohm:
I = 100 / R.

Se R está aumentando, ache a taxa instantânea de variação de I em relação a R, para:

a) Qualquer resistência R.

[Res.]
Lembrando que:
∆IR = limh→0 {[I(R + h) - I (R)] / h}
Sendo I(R) = 100/R

limh→0 {[100/(R + h) - 100/(R)] / h}

= limh→0 {[100 . (R) - 100 . (R + h)] / [(R + h) . (R)] / h}
= limh→0 {[100R - 100R - 100h] / [(R + h) . (R)] / h}
= limh→0 {- 100h / [(R + h) . (R)] / h}
= limh→0 {- 100 / [(R + h) . (R)]}
= -100 / [(R+0) . R]
= -100 / [R . R]
= -100 / R² 


b) Uma resistência de 20 ohms.

[Res.]
Quando R = 20 ohms:
∆IR = -100 / R² = -100 / 20² = -100 / 400 = -1/4 = -0,25 Amper


Exercício:

Qual a taxa de variação da área de uma circunferência em relação ao raio, supondo que este varia, quando temos r = 3cm?

[Res.]
A = 𝜋 . r²

Lembrando que:
∆AR = limh→0 {[A(r + h) - A (r)] / h}

= limh→0 {[𝜋 . (r + h)² - 𝜋 . (r)²] / h}
= limh→0 {[𝜋 . (r² + 2rh + h²) - 𝜋 . r²] / h}
= limh→0 {[𝜋 . r² + 2rh𝜋 + h²𝜋 - 𝜋 . r²] / h}
= limh→0 {[2rh𝜋 + h²𝜋] / h}
= limh→0 {h . [2r𝜋 + h𝜋] / h}
= limh→0 {2r𝜋 + h𝜋}
= 2r𝜋 + 0 . 𝜋
= 2r𝜋

Quando r = 3cm:
∆AR = 2r𝜋 = 2 . 3 . 𝜋 = 6 . 𝜋 = 6𝜋



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

terça-feira, 23 de abril de 2019

Cálculo I - 23/04/2019

Cálculo I - 23/04/2019 - (Terça-feira)

Previsão de aula: 20h30min às 22h00min
Início da aula: 20h40min
Término da aula: 21h52min
Taxa de aproveitamento: 80,0%


Continuação da taxa de velocidade:
Se quisermos determinar a taxa à qual o automóvel está viajando às 2h, precisamos calcular sua velocidade instantânea. Uma ideia para fazer isso é calcular a velocidade média no intervalo [2; 2 + t(s)] e ir determinando de t(s) de tal forma que o comprimento (s) percorrido no intervalo [2; 2 + t(s)] se aproxime de zero.
À medida em que isso for feito, as velocidades médias se aproximarão da velocidade no instante t = 2h.
Em geral, se s (posição) é uma função do tempo s(t), é a função posição de um obejto cuja trajetória é retilínea, então, a velocidade do objeto no instante t é:
v(t) = lim∆t→0 {[s . (t + t(s)) - s(t)] / ∆t}
v(t) = lim∆t→0 {[s . (t + ∆t) - s(t)] / ∆t}


Exemplo:
De um balão a 150m do solo, deixa-se cair um saco de areia. Desprezando-se a resistência do ar, a distância s(t) do solo ao saco de areia em queda, após t segundos é dado por:
s(t) = - 4,9t² + 150

Gráfico de s(t) = - 4,9t² + 150, obtido com o GeoGebra e o Krita.
Saco de areia lançado do balão a 150m de altura, obtido com o Krita.
Determine a velocidade do saco de areia:
a) quando t = 0s.

[Res.]

s(t) = - 4,9t² + 150

t = 0 → s(0) = 150m

Para encontrar a velocidade, podemos calcular o limite da distância percorrida quanto o tempo t tende a 0:
v(t) = lim∆t→0 {[s . (t + ∆t) - s(t)] / ∆t}
= lim∆t→0 {[(- 4,9(t + ∆t)² + 150) - (- 4,9t² + 150)] / (∆t)}
= lim∆t→0 {[- 4,9(t² + 2 . t . ∆t + ∆t²) + 150 + 4,9t² - 150] / (∆t)}
= lim∆t→0 {[- 4,9t² - 4,9 . 2 . t . ∆t - 4,9 ∆t² + 150 + 4,9t² - 150] / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t . ∆t - 4,9 ∆t² + 150 - 150) / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t . ∆t - 4,9 ∆t²] / (∆t)}
= lim∆t→0 {[- 4,9 . (2 . t . ∆t - ∆t²)] / (∆t)}
= lim∆t→0 {[ ∆t . (- 4,9 . 2 . t + 4,9 . ∆t)] / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t + 4,9 . ∆t]}
= {[- 4,9 . 2 . 0 + 4,9 . 0]}
= 0 + 0
= 0m/s


b) quando t = 2s.

[Res.]
Para t = 2:
v(t) = lim∆t→0 {[s . (t + ∆t) - s(t)] / ∆t}
= lim∆t→0 {[(- 4,9(t + ∆t)² + 150) - (- 4,9t² + 150)] / (∆t)}
= lim∆t→0 {[- 4,9(t² + 2 . t . ∆t + ∆t²) + 150 + 4,9t² - 150] / (∆t)}
= lim∆t→0 {[- 4,9t² - 4,9 . 2 . t . ∆t - 4,9 ∆t² + 150 + 4,9t² - 150] / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t . ∆t - 4,9 ∆t² + 150 - 150) / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t . ∆t - 4,9 ∆t²] / (∆t)}
= lim∆t→0 {[- 4,9 . (2 . t . ∆t - ∆t²)] / (∆t)}
= lim∆t→0 {[ ∆t . (- 4,9 . 2 . t + 4,9 . ∆t)] / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t + 4,9 . ∆t]}
= {[- 4,9 . 2 . 2 + 4,9 . 0]}
= - 4,9 . 2 . 2 + 0
= -19,6 m/s


c) no instante em que ele toca o solo.

[Res.]
Para tocar o solo:

s(t) = - 4,9t² + 150
0 = - 4,9t² + 150
-150 = - 4,9t²
t² = 150 / 4,9
t = ± 5,5328 segundos.
Como o tempo nesse caso só pode ser positivo:
t = + 5,5328 segundos.

Encontrando a velocidade do saco de areia ao tocar o solo:
Para t = 5,5328:
v(t) = lim∆t→0 {[s . (t + ∆t) - s(t)] / ∆t}
= lim∆t→0 {[(- 4,9(t + ∆t)² + 150) - (- 4,9t² + 150)] / (∆t)}
= lim∆t→0 {[- 4,9(t² + 2 . t . ∆t + ∆t²) + 150 + 4,9t² - 150] / (∆t)}
= lim∆t→0 {[- 4,9t² - 4,9 . 2 . t . ∆t - 4,9 ∆t² + 150 + 4,9t² - 150] / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t . ∆t - 4,9 ∆t² + 150 - 150) / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t . ∆t - 4,9 ∆t²] / (∆t)}
= lim∆t→0 {[- 4,9 . (2 . t . ∆t - ∆t²)] / (∆t)}
= lim∆t→0 {[ ∆t . (- 4,9 . 2 . t + 4,9 . ∆t)] / (∆t)}
= lim∆t→0 {[- 4,9 . 2 . t + 4,9 . ∆t]}
= {[- 4,9 . 2 . 5,5328 + 4,9 . 0]}
= - 4,9 . 2 . 5,5328 + 0
= - 54,22144 m/s

 
Taxa de variação

Exemplos de aplicação:

* Durante certo tempo um químico pode estar interessado na taxa à qual certa substância se dissolve em água.

* Um engenheiro eletricista pode desejar saber a taxa de variação da corrente em parte de um circuito elétrico durante os t primeiros segundos de funcionamento.

Podemos considerar taxas de variação em relação à outras variáveis independentes que não o tempo. Por exemplo:
V = c / p.
Sob temperatura constante, o volume V e a pressão P de um gás confinado estão relacionados. Se a pressão varia, podemos achar a taxa à qual o volume varia por unidade de variação da pressão.


Definição:
Seja y = f(x) uma função definida em um intervalo aberto I contando a.

1) A taxa média de variação de y = f(x) em relação a x no intervalo [a, a+h] será:
ym = ∆y / ∆x = [f(a + h) - f(a)] / h

Esquema para visualizar a taxa média de variação, obtido com o Krita.


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

quarta-feira, 17 de abril de 2019

Cálculo I - 17/04/2019

Cálculo I - 17/04/2019 - (Quarta-feira)

Previsão de aula: 20h30min às 22h00min
Início da aula: 20h39min
Término da aula: aproximadamente 21h45min
Taxa de aproveitamento: aproximadamente 73,33%

Observação: discussão social em sala de aula (tema: esmola)


Equação da reta normal

Seja y = f(x) uma curva e seja P(a, f(a)) um ponto sobre seu gráfico. A reta normal n ao gráfico de f no ponto P é a reta perpendicular à reta tangente (t).

Reta tangente (t) e reta normal (r) à tangente em um ponto de um gráfico, obtido com o Krita.
Da Geometria Analítica sabemos que mn = -1 / mt.


Logo, a equação da reta normal ao gráfico de f em P é:
y - f(a) = -1/mt . (x - a)


Exemplo:
Determine a equação da reta tangente e a equação da reta normal ao gráfico de f(x) = x³ no ponto de abcissa a = -1.

[Res.]
Gráfico de f(x) = x³, obtido com o GeoGebra e o Krita.
f(x) = x³

Encontrando o coeficiente angular no ponto com x igual a -1.

limh→0 [f(a+h) - f(a) / h]
= limh→0 [(a+h)³ - (a)³ / h]
= limh→0 [(a³ + 3a²h + 3ah² + h³ - a³) / h]
= limh→0 [(3a²h + 3ah² + h³) / h]
= limh→0 [h . (3a² + 3ah + h²) / h]
= limh→0 [3a² + 3ah + h²]
= 3a² + 0 + 0
= 3a²

Assim, quando x é igual a -1, o limite (que é o coeficiente angular da reta tangente no ponto) será:
3a² = 3 . (-1)² = 3 . 1 = 3 = mt

Obtendo a equação da reta tangente no ponto de abcissa a = -1:
y - y0 = m . (x - x0)
Como só temos o valor de x (abcissa) do ponto, será necessário calcular o valor de y:
y = x³ = (-1)³ = -1
Agora temos o ponto A(-1, -1). Assim:
y - (-1) = m . (x - (-1))
y + 1 = m . (x + 1)
y = m.x + m - 1
Como mt = 3:
y = 3 . x + 3 -1
y = 3x + 2


Logo, a equação da reta normal ao gráfico de f em A(-1, -1) é:
y - f(a) = -1/mt . (x - a)
y - (-1) = -1/(3) . (x - (-1))
y + 1 = -1/3 . (x + 1)
y + 1 = -x/3 -1/3
y = -x/3 -1/3 - 1
y = -x/3 - 4/3
y = (-x - 4) / 3



Velocidade média e velocidade instantânea:
Vm = ∆S / ∆T, onde:
∆S → posição
∆T → tempo


Exemplo:
Um automóvel deixa a cidade A à 1h, percorre uma estrada retilínea e chega à cidade B a 240km de A, às 4 horas.
Determine a velocidade média do automóvel durante este percurso.
Esquema de percurso de A até B (240km) em 3 horas, obtido com o Krita.

[Res.]
Vm = ∆S / ∆T = (S1 - S0) / (T1 - T0) = (240 - 0) / (4 - 1) = 240 / 3 = 80 km/h

Esta é a velocidade que, se mantida constante, durante 3 horas, permite ao automóvel percorrer os 240km de A até B.
A velocidade média nada diz sobre a velocidade em um instante.
Por exemplo, às 2h o velocímetro do carro poderia registrar 60km/h ou 100km/h ou até mesmo estar marcando 0km/h, com o carro parado.

Se quisermos determinar a taxa à qual o automóvel está viajando às 2h, precisamos calcular sua velocidade instantânea.


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

terça-feira, 16 de abril de 2019

Cálculo I - 16/04/2019

Cálculo I - 16/04/2019 - (Terça-feira)

Previsão de aula: 20h30min às 22h00min
Início da aula: aproximadamente 20h40min
Término da aula: 21h54min
Taxa de aproveitamento: 82,22%


Continuação da matéria de derivada

Analisando como encontrar a reta tangente em um gráfico, obtido com o Krita.
mt = limx→a {[f(x) - f(a)] / (x - a)}

mt = limx→a {[f(a + h) - f(a)] / h}

Logo, a equação da reta tangente t é:
y - f(a) = mt . (x - a)
De:
y - y0 = m . (x - x0)


Exercícios
1) Seja f(x) = x², e seja "a" um número real qualquer:

a) Determine o coeficiente angular da tangente ao gráfico f em P(a, a²).

[Res.]
f(x) = x²
Gráfico de f(x) = x², obtido com o GeoGebra e o Krita.


mt = limh→0 {[f(a + h) - f(a)] / h}
= limh→0 {[(a² + 2ah + h²) - (a²)] / h}
= limh→0 {[a² + 2ah + h² - a²] / h}
= limh→0 {[2ah + h²] / h}
= limh→0 {h . [2a + h] / h}
= limh→0 {[2a + h]}
= 2a + 0
= 2a


b) Determine a equação da tangente no ponto R(-2, 4).  

[Res.]
Como a equação da tangente é do tipo y - y0 = m . (x - x0), e como mt = 2a, logo:


mt = 2a = 2 . (-2) = -4

y - y0 = m . (x - x0)
y - 4 = -4 . [x - (-2)]
y - 4 = -4 . [x +2]
y - 4 = -4x - 8
y = -4x - 8 + 4
y = -4x - 4


2) Encontre a equação da reta tangente à curva f(x) = 1/x no ponto P(3, 1/3).


[Res.]
f(x) = x-1
Gráfico de f(x) = 1/x, obtido com o GeoGebra e o Krita.
Derivando para encontrar o coeficiente angular da reta tangente:
f(x) = x-1 = 1/x
f '(x) = -1 . x-2 = -1 / x²

O coeficiente angular também pode ser encontrado pelo limite da função:
mt = limh→0 {[f(a + h) - f(a)] / h}
= limh→0 {[1/(a + h) - 1/(a)] / h}
= limh→0 {[(a - (a + h))/[(a + h).(a)]] / h}
= limh→0 {[(a - a - h)/[(a + h).(a)]] / h}
= limh→0 {[(- h)/[(a + h).(a)]] / h}
= limh→0 {[- 1/[(a + h).(a)]]}
= - 1/[(a + 0).(a)]
= -1 / (a . a) 
= -1 / a²


Inserindo o valor do coeficiente angular na equação da reta tangente:

y - y0 = m . (x - x0)
y - y0 = -1/x² . (x - x0)

Inserindo os valores do ponto P(3, 1/3):
y - (1/3) = -1 / 9 . (x - 3)
y = -1/9 . x + 1/3 + 1/3
y = -1/9 . x + 2/3


3) Determine a equação da reta tangente à curva f(x) = √x no ponto P(4, 2).

[Res.]
f(x) = √x

Gráfico de f(x) = √x, obtido com o GeoGebra e o Krita.

Derivando para encontrar o coeficiente angular da reta tangente:
f(x) = √x
f '(x) = 1/2 . x-1/2 = 1/(2 . √x)


O coeficiente angular também pode ser encontrado pelo limite da função:
mt = limh→0 {[f(a + h) - f(a)] / h}
= limh→0 {[√(a + h) - √(a)] / h}
= limh→0 {[√(a + h) - √(a)] / h . [√(a + h) + √(a)] / [√(a + h) + √a]}
= limh→0 {[(a + h) - (a)] / h . [1 / [√(a + h) + √a]}
= limh→0 {[(a + h - a)] / h . [1 / [√(a + h) + √a]}
= limh→0 {h / h . [1 / [√(a + h) + √a]}
= limh→0 {1 . [1 / [√(a + h) + √a]}
= limh→0 {1 / [√(a + h) + √a]}
= 1 / [√(a + 0) + √a]
= 1 / [√a + √a]
= 1 / (2√a)


Inserindo o valor do coeficiente angular na equação da reta tangente:
y - y0 = m . (x - x0)
y - y0 = 1/(2 . √x) . (x - x0)


Inserindo os valores do ponto P(4, 2):
y - (2) = 1/(2 . √x) . (x - 4)
y = 1/(2√x) . x - 4/(2√x) + 2
y = x/(2√x) - 4/(2√x) + 2
y = (x - 4) / (2√x) + 2


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Aceite-se para ser feliz



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

segunda-feira, 15 de abril de 2019

Cálculo I - aula 10 derivacao implicita 2



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - aula 09 derivacao implicita 1



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Viminas - 35 anos



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Curso Growatt - Aula 04 - Conexão CC