Ave Maria, cheia de graça, o Senhor é convosco, bendita sois vós entre as mulheres e bendito é o fruto do vosso ventre, Jesus. Santa Maria, Mãe de Deus, rogai por nós pecadores, agora e na hora da nossa morte. Amém.
quinta-feira, 2 de maio de 2019
Bit de parafusadeira - 90% dos marceneiros não sabem disso
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Como descobrir defeito em inversora usando apenas o multímetro Parte 2
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Como descobrir defeito em inversora usando apenas o multímetro Parte 1
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
INVERSORA TEM TENSÃO MAS NÃO ABRE O ARCO ,
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Máquinas de solda dicas de defeitos
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
terça-feira, 30 de abril de 2019
Cálculo 1 - 30/04/2019
Cálculo 1 - 30/04/2019
Previsão de aula: 20h30min às 22h00min
Início da aula: 20h39min
Término da aula: 21h54min
Taxa de aproveitamento: 75min / 90min = 83,33%
Observações:
Nota minha: explicações superficiais, sem aprofundamentos e análises dos fundamentos matemáticos.
Regra da Cadeia
Utillizada para calcular derivadas de funções compostas, tais como:
y = ∛(3x² - 9x)
y = sen (2x +1)
y = (2x² - 3x + 1)7
Teorema:
Se f e g são diferenciáveis, então F = fog é diferenciável e:
F'(x) = f '(g(x)) . g'(x)
ou se:
y = f(u)
u = g(x)
dy/dx = dy/du . du/dx
Exemplo:
1) Determine f'(x) e f(x) = (x² - 3x - 8)³
Se y = (x² - 3x - 8)³ podemos escrever:
y = u³
u = x² - 3x - 8
f '(x) = dy/dx = dy/du . du/dx = 3 (x² - 3x - 8)² . (2x - 3)
Exemplo:
Derive y = cos (t² + 1) em relação a t.
y = cos (u)
u = t² + 1
dy/dt = dy/du . du/dt = -sen (t² + 1) . (2t)
dy/dt = - 2t . sen (t² + 1)
Regras da derivação:
1) Derivada da função constante:
d/dx (c) = 0
2) Regra da Potência:
d/dx (xn) = n . xn-1
3) Regra do Produto:
A derivada de um produto de duas funções não é o produto de duas duas derivadas.
Exemplo:
f(x) = x8
f '(x) = 8x7
Por outro lado, podemos escrever:
f(x) = x³ . x5
(x³)' = 3x²
(x5)' = 5x4
(x³)' . (x5)' = 3x² . 5x4 = 15x6
(x8)' = (x³ . x5)' ≠ (x³)' . (x5)'
Se f e g são funções diferenciáveis, então:
d/dx [f(x) . g(x)] = d/dx [f(x)] . g(x) + d/dx [g(x)] . f(x)
Exemplo:
Calcule a derivada de f(x) = x8, usando a regra do produto e a igualdade f(x) = x³ . x5.
(x8)' = (x³ . x5)' = (x³)' . x5 + x³ . (x5)'
(x8)' = (x³ . x5)' = 3x² . x5 + x³ . 5x4
(x8)' = (x³ . x5)' = 3x7 + 5x7
(x8)' = (x³ . x5)' = 8x7
Exercícios:
Se k(x) = (2x² - 4x + 1) . (6x - 5)
f(x) = (2x² - 4x + 1)
g(x) = (6x - 5)
[Res.]
seja:
f(x) = u ⇒ u' = 4x - 4
g(x) = v ⇒ v' = 6
k'(x) = u' . v + v' . u
k'(x) = (4x - 4) . (6x - 5) + 6 . (2x² - 4x + 1)
= 24x² - 20x - 24x + 20 + 12x² - 24x + 6
= 36x² - 68x + 26
= 2 . (18x² - 34x +13)
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Previsão de aula: 20h30min às 22h00min
Início da aula: 20h39min
Término da aula: 21h54min
Taxa de aproveitamento: 75min / 90min = 83,33%
Observações:
Nota minha: explicações superficiais, sem aprofundamentos e análises dos fundamentos matemáticos.
Regra da Cadeia
Utillizada para calcular derivadas de funções compostas, tais como:
y = ∛(3x² - 9x)
y = sen (2x +1)
y = (2x² - 3x + 1)7
Teorema:
Se f e g são diferenciáveis, então F = fog é diferenciável e:
F'(x) = f '(g(x)) . g'(x)
ou se:
y = f(u)
u = g(x)
dy/dx = dy/du . du/dx
Exemplo:
1) Determine f'(x) e f(x) = (x² - 3x - 8)³
Se y = (x² - 3x - 8)³ podemos escrever:
y = u³
u = x² - 3x - 8
f '(x) = dy/dx = dy/du . du/dx = 3 (x² - 3x - 8)² . (2x - 3)
Exemplo:
Derive y = cos (t² + 1) em relação a t.
y = cos (u)
u = t² + 1
dy/dt = dy/du . du/dt = -sen (t² + 1) . (2t)
dy/dt = - 2t . sen (t² + 1)
Regras da derivação:
1) Derivada da função constante:
d/dx (c) = 0
Gráfico de y =3, com inclinação igual a 0, obtido com auxílio do GeoGebra |
2) Regra da Potência:
d/dx (xn) = n . xn-1
3) Regra do Produto:
A derivada de um produto de duas funções não é o produto de duas duas derivadas.
Exemplo:
f(x) = x8
f '(x) = 8x7
Por outro lado, podemos escrever:
f(x) = x³ . x5
(x³)' = 3x²
(x5)' = 5x4
(x³)' . (x5)' = 3x² . 5x4 = 15x6
(x8)' = (x³ . x5)' ≠ (x³)' . (x5)'
Se f e g são funções diferenciáveis, então:
d/dx [f(x) . g(x)] = d/dx [f(x)] . g(x) + d/dx [g(x)] . f(x)
Exemplo:
Calcule a derivada de f(x) = x8, usando a regra do produto e a igualdade f(x) = x³ . x5.
(x8)' = (x³ . x5)' = (x³)' . x5 + x³ . (x5)'
(x8)' = (x³ . x5)' = 3x² . x5 + x³ . 5x4
(x8)' = (x³ . x5)' = 3x7 + 5x7
(x8)' = (x³ . x5)' = 8x7
Exercícios:
Se k(x) = (2x² - 4x + 1) . (6x - 5)
f(x) = (2x² - 4x + 1)
g(x) = (6x - 5)
[Res.]
seja:
f(x) = u ⇒ u' = 4x - 4
g(x) = v ⇒ v' = 6
k'(x) = u' . v + v' . u
k'(x) = (4x - 4) . (6x - 5) + 6 . (2x² - 4x + 1)
= 24x² - 20x - 24x + 20 + 12x² - 24x + 6
= 36x² - 68x + 26
= 2 . (18x² - 34x +13)
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
domingo, 28 de abril de 2019
Astróide
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
sexta-feira, 26 de abril de 2019
Cálculo 1 - 26/04/2019
Cálculo 1 - 26/04/2019
Previsão de aula: 18h45min 20h15min
Início da aula: 18h52min
Encerramento: 20h15min
Taxa de aproveitamento: 83min / 90min = 92,22%
Exercícios:
Use a derivada via limite para calcular a derivada da função:
a) f(x) = 4 - √(x + 3)
limh→0 [f(x+h) - f(x)] / h
limh→0 {4 - √(x + h + 3) - [4 - √(x + 3)]} / h
limh→0 [- √(x + h + 3) + √(x + 3)] / h
limh→0 [√(x + 3) - √(x + h + 3)] / h . [√(x + 3) + √(x + h + 3)] / [√(x + 3) + √(x + h + 3)]
limh→0 [x + 3 - (x + h + 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 -h / {h . [√(x + 3) + √(x + h + 3)]} = -1 / [√(x + 3) + √(x + 3)]
= -1 / [2√(x + 3)]
b) f(x) = (x + 1) / (2 - x)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(x + h + 1) / (2 - x - h) - (x + 1) / (2 - x)] / h
limh→0 [(x + h + 1) . (2 - x) - (x + 1) . (2 - x - h)] / [(2 - x - h) . (2 - x)] / h
limh→0 [2x - x² + 2h - xh + 2 - x - (2x - x² - xh + 2 - x - h)] / [h . (4 - 2x - 2x + x² - 2h + xh)]
limh→0 (3h) / [h . (4 - 2x - 2x + x² - 2h + xh)]
limh→0 3 / [(2-x)² - h . (2 - x)] = 3 / (2 - x)²
c) f(x) = cos (3x)
[Res.]
limh→0 [f(x+h) - f(x)] / h
Como f(x) trata-se de cos(3x):
limh→0 {cos [3 (x + h)] - cos (3x)} / h
limh→0 [cos (3x + 3h) - cos (3x)] / h
Utilizando a seguinte relação trigonométrica:
cos (A + B) = cos (A) . cos (B) - sen (A) . sen (B)
Encontra-se:
limh→0 [(cos (3x) . cos (3h) - sen (3x) . sen (3h) - cos (3x)] / h
Desenvolvendo:
limh→0 [(cos (3x) . cos (3h) - sen (3x) . sen (3h)) - cos (3x)] / h
limh→0 [cos (3x) . (cos (3h) - 1) - sen (3x) . sen (3h)] / h
Utilizando as seguintes relações trigonométrica de limites:
limh→0 [(cos (h) - 1) / h] = 0 e limh→0 [sen (h) / h] =1
Encontra-se:
limh→0 [cos (3x) . (cos (3h) - 1) - sen (3x) . sen (3h)] / h
= limh→0 [cos (3x) . (cos (3h) - 1) / h - sen (3x) . sen (3h) / h]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3 . h) - 3. sen (3x) . sen (3h) / (3 . h)]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3h) - 3. sen (3x) . sen (3h) / (3h)]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3h) - 3. sen (3x) . sen (3h) / (3h)]
= limh→0 [3 . cos (3x)] . limh→0 [ (cos (3h) - 1) / (3h)] - limh→0 [3. sen (3x)] . limh→0 [sen (3h) / (3h)]
= limh→0 [3 . cos (3x)] . 0 - limh→0 [3. sen (3x)] . 1
= 0 - limh→0 [3. sen (3x)]
= - limh→0 [3. sen (3x)]
= - 3 . limh→0 [sen (3x)]
= - 3 . 0
= 0
referência consultada:
<http://mtm.ufsc.br/~azeredo/calculos/Acalculo/x/limderiv/solu/DefDerSol.html#SOLUTION%206>
d) f(x) = 5x² - 3x + 7
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 {[5(x+h)² - 3(x+h) + 7] - (5x² - 3x + 7)} / h
limh→0 {[5(x² + 2 xh + h²) - 3x - 3h + 7] - 5x² + 3x - 7} / h
limh→0 {[5x² + 10 xh + 5h² - 3x - 3h + 7] - 5x² + 3x - 7} / h
limh→0 {5x² + 10 xh + 5h² - 3x - 3h + 7 - 5x² + 3x - 7} / h
limh→0 {5x² + 10 xh + 5h² - 3x - 3h + 7 - 5x² + 3x - 7} / h
limh→0 {10 xh + 5h² - 3h} / h
limh→0 h(10 x + 5h - 3) / h
limh→0 10x + 5h - 3 = 10x + 5 . 0 - 3 = 10x - 0 - 3 = 10x - 3
e) f(x) = 2x . ex + 3x (resolução pendente)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [2(x+h) . e(x+h) + 3(x+h) - (2x . ex + 3x)] / h
limh→0 [2(x+h) . ex . eh + 3x + 3h - 2x . ex - 3x] / h
limh→0 [2x . ex . eh + 2h . ex . eh + 3h - 2x . ex] / h
limh→0 [2x . ex . (eh - 1) + h . (2 . ex . eh + 3)] / h
limh→0 [2x . ex . (eh - 1)] / h + limh→0 [h . (2 . ex . eh + 3)] / h
limh→0 [2x . ex . (eh - 1)] / h + limh→0 (2 . ex . eh + 3)
Como é o h que está em evidência no limite:
limh→0 [2x . ex . (eh - 1)] / h + limh→0 (2 . ex . eh + 3)
Existe um limite fundamental que podemos aplicar aqui (conforme a fonte consultada, citada abaixo):
limx→0 [(ax - 1) / x] = ln a.
Utilizando o limite fundamental, podemos continuar:
2x . ex . limh→0 [(eh - 1)] / h + limh→0 (2 . ex . eh + 3)
2x . ex . ln (e) + 2 . ex . e0 + 3
2x . ex . 1 + 2 . ex . 1 + 3
2x . ex + 2 . ex + 3
Fonte consultada: https://www.dicasdecalculo. com.br/resolvendo-derivadas- usando-a-definicao/
Gabarito: 2x. e^x + 2e^x + 3
Exercício - lista disponível na plataforma ESO
Questão 1)
Calcule a derivada da função dada usando definição de limites
a) f(x) = 3
b) f(x) = -5x
c) f(x) = 3 + 2/3 . x
d) f(x) = 2 . x² + x - 1
e) f(x) = x³ - 12x
f) f(x) = 1 / (x - 1)
g) f(x) = √(x + 1)
h) f(x) = (2 + x) / (3 - x)
i) f(x) = x1/3
j) f(x) = 4 - √(x + 3)
k) f(x) = (2 + x) / (9 - x)
Gabarito
a) 0
b) -5
c) 2/3
d) 4x + 1
e) 3x² - 12
f) -1 / (x - 1)²
g) 1/ (2 . √(x + 1))
h) 5 / (3 - x)²
i) 1 / 3x2/3
j) -1 / [2 . √(x + 3)]
k) 11 / (9 - x)²
Resoluções:
a) f(x) = 3
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [3 - 3] / h
limh→0 0 / h
limh→0 0 = 0
b) f(x) = -5x
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [-5(x + h) - (-5x)] / h
limh→0 [-5x - 5h + 5x] / h
limh→0 [- 5h] / h
limh→0 - 5 = -5
c) f(x) = 3 + 2/3 . x
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [3 + 2/3 . (x+h) - (3 + 2/3 . x)] / h
limh→0 [3 + 2/3 . x + 2/3 . h - 3 - 2/3 . x] / h
limh→0 [2/3 . h] / h
limh→0 2/3 = 2/3
d) f(x) = 2 . x² + x - 1
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [2 . (x+h)² + (x+h) - 1 - (2 . x² + x - 1)] / h
limh→0 [2 . (x² + 2xh + h²) + (x + h) - 1 - (2 . x² + x - 1)] / h
limh→0 [2x² + 4xh + 2h² + x + h - 1 - 2x² - x + 1] / h
limh→0 [4xh + 2h² + h] / h
limh→0 h(4x + 2h + 1) / h
limh→0 4x + 2h + 1 = 4x + 2.0 + 1 = 4x + 1
e) f(x) = x³ - 12x
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(x+h)³ - 12(x+h) - (x³ - 12x)] / h
limh→0 [x³ + 3x²h + 3xh² + h³ - 12x -12h - x³ + 12x] / h
limh→0 [3x²h + 3xh² + h³ - 12h] / h
limh→0 h(3x² + 3xh + h² - 12) / h
limh→0 3x² + 3xh + h² - 12 = 3x² + 3x . 0 + 0² - 12 = 3x² - 12
f) f(x) = 1 / (x - 1)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [1 / ((x+h) - 1) - (1 / (x - 1))] / h
limh→0 [1 / (x + h - 1) - (1 / (x - 1))] / h
limh→0 [(x - 1) - (x + h - 1)] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 [x - 1 - x - h + 1] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 [- h] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 - 1 / [(x + h - 1) . (x - 1)]
limh→0 - 1 / [x² - x + xh - h -x + 1]
limh→0 - 1 / [x² - 2x + xh - h + 1] = - 1 / [x² - 2x + x . 0 - 0 + 1]
= - 1 / [x² - 2x + 1] = -1 / (x - 1)²
g) f(x) = √(x + 1)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [√((x+h) + 1) - (√(x + 1))] / h
limh→0 [√(x + h + 1) - (√(x + 1))] / h
limh→0 [√(x + h + 1) - (√(x + 1))] / h . [√(x + h + 1) + (√(x + 1))] / [√(x + h + 1) + (√(x + 1))]
limh→0 [(x + h + 1) - (x + 1)] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 [x + h + 1 - x - 1] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 [h] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 1 / [√(x + h + 1) + √(x + 1)]
= 1 / [√(x + 0 + 1) + (√(x + 1))]
= 1 / [√(x + 1) + √(x + 1)]
= 1 / [2√(x + 1)]
h) f(x) = (2 + x) / (3 - x)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(2 + (x+h)) / (3 - (x+h)) - ((2 + x) / (3 - x))] / h
limh→0 {[(2 + x + h) / (3 - x - h)] - [(2 + x) / (3 - x)]} / h
limh→0 {[(2 + x + h) . (3 - x) - (2 + x) . (3 - x - h)] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[6 - 2x + 3x - x² + 3h - xh - (6 - 2x - 2h + 3x - x² - xh)] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[6 - 2x + 3x - x² + 3h - xh - 6 + 2x + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[-2x + 3x - x² + 3h - xh + 2x + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3x - x² + 3h - xh + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[- x² + 3h - xh + 2h + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3h - xh + 2h + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3h + 2h] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[5h] / [(3 - x - h) . (3 - x)]} / h
limh→0 5 / [(3 - x - h) . (3 - x)]
= 5 / [(3 - x - 0) . (3 - x)]
= 5 / [(3 - x) . (3 - x)]
= 5 / (3 - x)²
i) f(x) = x1/3
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(x+h)1/3 - (x)1/3] / h
Note que (A - B) pode ser escrito como a diferença entre cubos:
A - B
= (A1/3)3 - (B1/3)3
= (A1/3 - B1/3) . (A2/3 + A1/3 . B1/3 + B2/3)
= (A3/3 + A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B3/3)
= (A + A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B)
= (A +A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B)
= (A +A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B)
= A - B
Desenvolvendo:
limh→0 [(x+h)1/3 - (x)1/3] / h
Seja:
A = x + h
B = x
limh→0 [(A)1/3 - (B)1/3] / h . (A2/3 + A1/3 . B1/3 + B2/3) / (A2/3 + A1/3 . B1/3 + B2/3)
= limh→0 {[(A)1/3 - (B)1/3] . (A2/3 + A1/3 . B1/3 + B2/3)} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
= limh→0 {A - B} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
Assim:
= limh→0 {A - B} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
= limh→0 {(x + h) - x} / [h . ((x + h)2/3 + (x + h)1/3 . x1/3 + x2/3)]
= limh→0 {h} / [h . ((x + h)2/3 + (x + h)1/3 . x1/3 + x2/3)]
= limh→0 1 / [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]
Calculando o limite:
= limh→0 1 / [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]
= limh→0 1 / {limh→0 [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]}
= 1 / {limh→0 [(x + h)2/3] + limh→0 [(x + h)1/3] . limh→0 [x1/3] + limh→0 [x2/3]}
= 1 / [(x + 0)2/3 + (x + 0)1/3 . x1/3 + x2/3]
= 1 / [x2/3 + x1/3 . x1/3 + x2/3]
= 1 / [x2/3 + x2/3 + x2/3]
= 1 / [3 . x2/3]
Referências consultadas:
<http://mtm.ufsc.br/~azeredo/calculos/Acalculo/x/limderiv/solu/DefDerSol.html#SOLUTION%205>
<https://brasilescola.uol.com.br/matematica/diferenca-dois-cubos.htm>
j) f(x) = 4 - √(x + 3)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [4 - √((x+h) + 3) - (4 - √(x + 3))] / h
limh→0 [4 - √(x + h + 3) - 4 + √(x + 3)] / h
limh→0 [√(x + 3) - √(x + h + 3)] / h
limh→0 [√(x + 3) - √(x + h + 3)] / h . [√(x + 3) + √(x + h + 3)] / [√(x + 3) + √(x + h + 3)]
limh→0 [(x + 3) - (x + h + 3)] / h . 1 / [√(x + 3) + √(x + h + 3)]
limh→0 [(x + 3) - (x + h + 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 [x + 3 - x - h - 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 [- h] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 -1 / [√(x + 3) + √(x + h + 3)]
= -1 / [√(x + 3) + √(x + 0 + 3)]
= -1 / [√(x + 3) + √(x + 3)]
= -1 / [2 . √(x + 3)]
k) f(x) = (2 + x) / (9 - x)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(2 + (x+h)) / (9 - (x+h)) - ((2 + x) / (9 - x))] / h
limh→0 [(2 + x + h) / (9 - x - h) - ((2 + x) / (9 - x))] / h
limh→0 {[(2 + x + h) . (9 - x) - (2 + x) . (9 - x - h)] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[18 - 2x + 9x - x² + 9h - xh - (18 - 2x - 2h +9 x - x² - xh)] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[18 - 2x + 9x - x² + 9h - xh - 18 + 2x + 2h - 9x + x² + xh] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[9h + 2h] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[11h] / [(9 - x - h) . (9 - x)]} / h
limh→0 11h / [(9 - x - h) . (9 - x)] . 1/ h
limh→0 11h / [h . (9 - x - h) . (9 - x)]
limh→0 11 / [(9 - x - h) . (9 - x)]
= 11 / [(9 - x - 0) . (9 - x)]
= 11 / [(9 - x) . (9 - x)]
= 11 / (9 - x)²
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Previsão de aula: 18h45min 20h15min
Início da aula: 18h52min
Encerramento: 20h15min
Taxa de aproveitamento: 83min / 90min = 92,22%
Exercícios:
Use a derivada via limite para calcular a derivada da função:
a) f(x) = 4 - √(x + 3)
limh→0 [f(x+h) - f(x)] / h
limh→0 {4 - √(x + h + 3) - [4 - √(x + 3)]} / h
limh→0 [- √(x + h + 3) + √(x + 3)] / h
limh→0 [√(x + 3) - √(x + h + 3)] / h . [√(x + 3) + √(x + h + 3)] / [√(x + 3) + √(x + h + 3)]
limh→0 [x + 3 - (x + h + 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 -h / {h . [√(x + 3) + √(x + h + 3)]} = -1 / [√(x + 3) + √(x + 3)]
= -1 / [2√(x + 3)]
b) f(x) = (x + 1) / (2 - x)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(x + h + 1) / (2 - x - h) - (x + 1) / (2 - x)] / h
limh→0 [(x + h + 1) . (2 - x) - (x + 1) . (2 - x - h)] / [(2 - x - h) . (2 - x)] / h
limh→0 [2x - x² + 2h - xh + 2 - x - (2x - x² - xh + 2 - x - h)] / [h . (4 - 2x - 2x + x² - 2h + xh)]
limh→0 (3h) / [h . (4 - 2x - 2x + x² - 2h + xh)]
limh→0 3 / [(2-x)² - h . (2 - x)] = 3 / (2 - x)²
c) f(x) = cos (3x)
[Res.]
limh→0 [f(x+h) - f(x)] / h
Como f(x) trata-se de cos(3x):
limh→0 {cos [3 (x + h)] - cos (3x)} / h
limh→0 [cos (3x + 3h) - cos (3x)] / h
Utilizando a seguinte relação trigonométrica:
cos (A + B) = cos (A) . cos (B) - sen (A) . sen (B)
Encontra-se:
limh→0 [(cos (3x) . cos (3h) - sen (3x) . sen (3h) - cos (3x)] / h
Desenvolvendo:
limh→0 [(cos (3x) . cos (3h) - sen (3x) . sen (3h)) - cos (3x)] / h
limh→0 [cos (3x) . (cos (3h) - 1) - sen (3x) . sen (3h)] / h
Utilizando as seguintes relações trigonométrica de limites:
limh→0 [(cos (h) - 1) / h] = 0 e limh→0 [sen (h) / h] =1
Encontra-se:
limh→0 [cos (3x) . (cos (3h) - 1) - sen (3x) . sen (3h)] / h
= limh→0 [cos (3x) . (cos (3h) - 1) / h - sen (3x) . sen (3h) / h]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3 . h) - 3. sen (3x) . sen (3h) / (3 . h)]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3h) - 3. sen (3x) . sen (3h) / (3h)]
= limh→0 [3 . cos (3x) . (cos (3h) - 1) / (3h) - 3. sen (3x) . sen (3h) / (3h)]
= limh→0 [3 . cos (3x)] . limh→0 [ (cos (3h) - 1) / (3h)] - limh→0 [3. sen (3x)] . limh→0 [sen (3h) / (3h)]
= limh→0 [3 . cos (3x)] . 0 - limh→0 [3. sen (3x)] . 1
= 0 - limh→0 [3. sen (3x)]
= - limh→0 [3. sen (3x)]
= - 3 . limh→0 [sen (3x)]
= - 3 . 0
= 0
referência consultada:
<http://mtm.ufsc.br/~azeredo/calculos/Acalculo/x/limderiv/solu/DefDerSol.html#SOLUTION%206>
d) f(x) = 5x² - 3x + 7
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 {[5(x+h)² - 3(x+h) + 7] - (5x² - 3x + 7)} / h
limh→0 {[5(x² + 2 xh + h²) - 3x - 3h + 7] - 5x² + 3x - 7} / h
limh→0 {[5x² + 10 xh + 5h² - 3x - 3h + 7] - 5x² + 3x - 7} / h
limh→0 {5x² + 10 xh + 5h² - 3x - 3h + 7 - 5x² + 3x - 7} / h
limh→0 {
limh→0 {10 xh + 5h² - 3h} / h
limh→0 h(10 x + 5h - 3) / h
limh→0 10x + 5h - 3 = 10x + 5 . 0 - 3 = 10x - 0 - 3 = 10x - 3
e) f(x) = 2x . ex + 3x (resolução pendente)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [2(x+h) . e(x+h) + 3(x+h) - (2x . ex + 3x)] / h
limh→0 [2(x+h) . ex . eh + 3x + 3h - 2x . ex - 3x] / h
limh→0 [2x . ex . eh + 2h . ex . eh + 3h - 2x . ex] / h
limh→0 [2x . ex . (eh - 1) + h . (2 . ex . eh + 3)] / h
limh→0 [2x . ex . (eh - 1)] / h + limh→0 [h . (2 . ex . eh + 3)] / h
limh→0 [2x . ex . (eh - 1)] / h + limh→0 (2 . ex . eh + 3)
Como é o h que está em evidência no limite:
limh→0 [2x . ex . (eh - 1)] / h + limh→0 (2 . ex . eh + 3)
Existe um limite fundamental que podemos aplicar aqui (conforme a fonte consultada, citada abaixo):
limx→0 [(ax - 1) / x] = ln a.
Utilizando o limite fundamental, podemos continuar:
2x . ex . limh→0 [(eh - 1)] / h + limh→0 (2 . ex . eh + 3)
2x . ex . ln (e) + 2 . ex . e0 + 3
2x . ex . 1 + 2 . ex . 1 + 3
2x . ex + 2 . ex + 3
Fonte consultada: https://www.dicasdecalculo.
Gabarito: 2x. e^x + 2e^x + 3
Exercício - lista disponível na plataforma ESO
Questão 1)
Calcule a derivada da função dada usando definição de limites
a) f(x) = 3
b) f(x) = -5x
c) f(x) = 3 + 2/3 . x
d) f(x) = 2 . x² + x - 1
e) f(x) = x³ - 12x
f) f(x) = 1 / (x - 1)
g) f(x) = √(x + 1)
h) f(x) = (2 + x) / (3 - x)
i) f(x) = x1/3
j) f(x) = 4 - √(x + 3)
k) f(x) = (2 + x) / (9 - x)
Gabarito
a) 0
b) -5
c) 2/3
d) 4x + 1
e) 3x² - 12
f) -1 / (x - 1)²
g) 1/ (2 . √(x + 1))
h) 5 / (3 - x)²
i) 1 / 3x2/3
j) -1 / [2 . √(x + 3)]
k) 11 / (9 - x)²
Resoluções:
a) f(x) = 3
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [3 - 3] / h
limh→0 0 / h
limh→0 0 = 0
b) f(x) = -5x
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [-5(x + h) - (-5x)] / h
limh→0 [-5x - 5h + 5x] / h
limh→0 [- 5h] / h
limh→0 - 5 = -5
c) f(x) = 3 + 2/3 . x
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [3 + 2/3 . (x+h) - (3 + 2/3 . x)] / h
limh→0 [3 + 2/3 . x + 2/3 . h - 3 - 2/3 . x] / h
limh→0 [2/3 . h] / h
limh→0 2/3 = 2/3
d) f(x) = 2 . x² + x - 1
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [2 . (x+h)² + (x+h) - 1 - (2 . x² + x - 1)] / h
limh→0 [2 . (x² + 2xh + h²) + (x + h) - 1 - (2 . x² + x - 1)] / h
limh→0 [2x² + 4xh + 2h² + x + h - 1 - 2x² - x + 1] / h
limh→0 [4xh + 2h² + h] / h
limh→0 h(4x + 2h + 1) / h
limh→0 4x + 2h + 1 = 4x + 2.0 + 1 = 4x + 1
e) f(x) = x³ - 12x
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(x+h)³ - 12(x+h) - (x³ - 12x)] / h
limh→0 [x³ + 3x²h + 3xh² + h³ - 12x -12h - x³ + 12x] / h
limh→0 [3x²h + 3xh² + h³ - 12h] / h
limh→0 h(3x² + 3xh + h² - 12) / h
limh→0 3x² + 3xh + h² - 12 = 3x² + 3x . 0 + 0² - 12 = 3x² - 12
f) f(x) = 1 / (x - 1)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [1 / ((x+h) - 1) - (1 / (x - 1))] / h
limh→0 [1 / (x + h - 1) - (1 / (x - 1))] / h
limh→0 [(x - 1) - (x + h - 1)] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 [x - 1 - x - h + 1] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 [- h] / [(x + h - 1) . (x - 1)] . 1 / h
limh→0 - 1 / [(x + h - 1) . (x - 1)]
limh→0 - 1 / [x² - x + xh - h -x + 1]
limh→0 - 1 / [x² - 2x + xh - h + 1] = - 1 / [x² - 2x + x . 0 - 0 + 1]
= - 1 / [x² - 2x + 1] = -1 / (x - 1)²
g) f(x) = √(x + 1)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [√((x+h) + 1) - (√(x + 1))] / h
limh→0 [√(x + h + 1) - (√(x + 1))] / h
limh→0 [√(x + h + 1) - (√(x + 1))] / h . [√(x + h + 1) + (√(x + 1))] / [√(x + h + 1) + (√(x + 1))]
limh→0 [(x + h + 1) - (x + 1)] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 [x + h + 1 - x - 1] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 [h] / {h . [√(x + h + 1) + √(x + 1)]}
limh→0 1 / [√(x + h + 1) + √(x + 1)]
= 1 / [√(x + 0 + 1) + (√(x + 1))]
= 1 / [√(x + 1) + √(x + 1)]
= 1 / [2√(x + 1)]
h) f(x) = (2 + x) / (3 - x)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(2 + (x+h)) / (3 - (x+h)) - ((2 + x) / (3 - x))] / h
limh→0 {[(2 + x + h) / (3 - x - h)] - [(2 + x) / (3 - x)]} / h
limh→0 {[(2 + x + h) . (3 - x) - (2 + x) . (3 - x - h)] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[6 - 2x + 3x - x² + 3h - xh - (6 - 2x - 2h + 3x - x² - xh)] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[6 - 2x + 3x - x² + 3h - xh - 6 + 2x + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[-2x + 3x - x² + 3h - xh + 2x + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3x - x² + 3h - xh + 2h - 3x + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[- x² + 3h - xh + 2h + x² + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3h - xh + 2h + xh] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[3h + 2h] / [(3 - x - h) . (3 - x)]} / h
limh→0 {[5h] / [(3 - x - h) . (3 - x)]} / h
limh→0 5 / [(3 - x - h) . (3 - x)]
= 5 / [(3 - x - 0) . (3 - x)]
= 5 / [(3 - x) . (3 - x)]
= 5 / (3 - x)²
i) f(x) = x1/3
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(x+h)1/3 - (x)1/3] / h
Note que (A - B) pode ser escrito como a diferença entre cubos:
A - B
= (A1/3)3 - (B1/3)3
= (A1/3 - B1/3) . (A2/3 + A1/3 . B1/3 + B2/3)
= (A3/3 + A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B3/3)
= (A + A2/3 . B1/3 + A1/3 . B2/3 - A2/3 . B1/3 - A1/3 . B2/3 - B)
= (A +
= (A +
= A - B
Desenvolvendo:
limh→0 [(x+h)1/3 - (x)1/3] / h
Seja:
A = x + h
B = x
limh→0 [(A)1/3 - (B)1/3] / h . (A2/3 + A1/3 . B1/3 + B2/3) / (A2/3 + A1/3 . B1/3 + B2/3)
= limh→0 {[(A)1/3 - (B)1/3] . (A2/3 + A1/3 . B1/3 + B2/3)} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
= limh→0 {A - B} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
Assim:
= limh→0 {A - B} / [h . (A2/3 + A1/3 . B1/3 + B2/3)]
= limh→0 {(x + h) - x} / [h . ((x + h)2/3 + (x + h)1/3 . x1/3 + x2/3)]
= limh→0 {h} / [h . ((x + h)2/3 + (x + h)1/3 . x1/3 + x2/3)]
= limh→0 1 / [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]
Calculando o limite:
= limh→0 1 / [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]
= limh→0 1 / {limh→0 [(x + h)2/3 + (x + h)1/3 . x1/3 + x2/3]}
= 1 / {limh→0 [(x + h)2/3] + limh→0 [(x + h)1/3] . limh→0 [x1/3] + limh→0 [x2/3]}
= 1 / [(x + 0)2/3 + (x + 0)1/3 . x1/3 + x2/3]
= 1 / [x2/3 + x1/3 . x1/3 + x2/3]
= 1 / [x2/3 + x2/3 + x2/3]
= 1 / [3 . x2/3]
Referências consultadas:
<http://mtm.ufsc.br/~azeredo/calculos/Acalculo/x/limderiv/solu/DefDerSol.html#SOLUTION%205>
<https://brasilescola.uol.com.br/matematica/diferenca-dois-cubos.htm>
j) f(x) = 4 - √(x + 3)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [4 - √((x+h) + 3) - (4 - √(x + 3))] / h
limh→0 [4 - √(x + h + 3) - 4 + √(x + 3)] / h
limh→0 [√(x + 3) - √(x + h + 3)] / h
limh→0 [√(x + 3) - √(x + h + 3)] / h . [√(x + 3) + √(x + h + 3)] / [√(x + 3) + √(x + h + 3)]
limh→0 [(x + 3) - (x + h + 3)] / h . 1 / [√(x + 3) + √(x + h + 3)]
limh→0 [(x + 3) - (x + h + 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 [x + 3 - x - h - 3)] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 [- h] / {h . [√(x + 3) + √(x + h + 3)]}
limh→0 -1 / [√(x + 3) + √(x + h + 3)]
= -1 / [√(x + 3) + √(x + 0 + 3)]
= -1 / [√(x + 3) + √(x + 3)]
= -1 / [2 . √(x + 3)]
k) f(x) = (2 + x) / (9 - x)
[Res.]
limh→0 [f(x+h) - f(x)] / h
limh→0 [(2 + (x+h)) / (9 - (x+h)) - ((2 + x) / (9 - x))] / h
limh→0 [(2 + x + h) / (9 - x - h) - ((2 + x) / (9 - x))] / h
limh→0 {[(2 + x + h) . (9 - x) - (2 + x) . (9 - x - h)] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[18 - 2x + 9x - x² + 9h - xh - (18 - 2x - 2h +9 x - x² - xh)] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[18 - 2x + 9x - x² + 9h - xh - 18 + 2x + 2h - 9x + x² + xh] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[9h + 2h] / [(9 - x - h) . (9 - x)]} / h
limh→0 {[11h] / [(9 - x - h) . (9 - x)]} / h
limh→0 11h / [(9 - x - h) . (9 - x)] . 1/ h
limh→0 11h / [h . (9 - x - h) . (9 - x)]
limh→0 11 / [(9 - x - h) . (9 - x)]
= 11 / [(9 - x - 0) . (9 - x)]
= 11 / [(9 - x) . (9 - x)]
= 11 / (9 - x)²
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
quinta-feira, 25 de abril de 2019
A great big world - Say something. (Tradução)
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Grampeador e pinador elétrico Vonder...
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
quarta-feira, 24 de abril de 2019
Cálculo I - 24/04/2019
Cálculo I - 24/04/2019 (Quarta-feira)
Previsão de aula: 20h30min às 22h00min
Início da aula: 20h38min
Término da aula: 21h50min
Taxa de aproveitamento: 80,0%
Taxa instantânea de variação
ym = ∆y / ∆x = [f(a + h) - f(a)] / h
A taxa instantânea de variação de y = f(x) em relação a x em "a" é:
ya = ∆y / ∆x = [f(a + h) - f(a)] / h
Se a variável independente é o tempo t e y = s(t) é a posição em uma reta coordenada, então:
* velocidade média é a taxa média de variação de s em relação a t em um instante de tempo.
* velocidade instantânea é a taxa de variação de s em relação a t no instante t = a.
Exemplo:
A voltagem de curto circuito elétrico é de 100 volts. Se a corrente (em amperes) é I e a resistência (em ohms) é R, então, pela Lei de Ohm:
I = 100 / R.
Se R está aumentando, ache a taxa instantânea de variação de I em relação a R, para:
a) Qualquer resistência R.
[Res.]
Lembrando que:
∆IR = limh→0 {[I(R + h) - I (R)] / h}
Sendo I(R) = 100/R
limh→0 {[100/(R + h) - 100/(R)] / h}
= limh→0 {[100 . (R) - 100 . (R + h)] / [(R + h) . (R)] / h}
= limh→0 {[100R - 100R - 100h] / [(R + h) . (R)] / h}
= limh→0 {- 100h / [(R + h) . (R)] / h}
= limh→0 {- 100 / [(R + h) . (R)]}
= -100 / [(R+0) . R]
= -100 / [R . R]
= -100 / R²
b) Uma resistência de 20 ohms.
[Res.]
Quando R = 20 ohms:
∆IR = -100 / R² = -100 / 20² = -100 / 400 = -1/4 = -0,25 Amper
Exercício:
Qual a taxa de variação da área de uma circunferência em relação ao raio, supondo que este varia, quando temos r = 3cm?
[Res.]
A = 𝜋 . r²
Lembrando que:
∆AR = limh→0 {[A(r + h) - A (r)] / h}
= limh→0 {[𝜋 . (r + h)² - 𝜋 . (r)²] / h}
= limh→0 {[𝜋 . (r² + 2rh + h²) - 𝜋 . r²] / h}
= limh→0 {[𝜋 . r² + 2rh𝜋 + h²𝜋 - 𝜋 . r²] / h}
= limh→0 {[2rh𝜋 + h²𝜋] / h}
= limh→0 {h . [2r𝜋 + h𝜋] / h}
= limh→0 {2r𝜋 + h𝜋}
= 2r𝜋 + 0 . 𝜋
= 2r𝜋
Quando r = 3cm:
∆AR = 2r𝜋 = 2 . 3 . 𝜋 = 6 . 𝜋 = 6𝜋
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Previsão de aula: 20h30min às 22h00min
Início da aula: 20h38min
Término da aula: 21h50min
Taxa de aproveitamento: 80,0%
Taxa instantânea de variação
ym = ∆y / ∆x = [f(a + h) - f(a)] / h
A taxa instantânea de variação de y = f(x) em relação a x em "a" é:
ya = ∆y / ∆x = [f(a + h) - f(a)] / h
Se a variável independente é o tempo t e y = s(t) é a posição em uma reta coordenada, então:
* velocidade média é a taxa média de variação de s em relação a t em um instante de tempo.
* velocidade instantânea é a taxa de variação de s em relação a t no instante t = a.
Exemplo:
A voltagem de curto circuito elétrico é de 100 volts. Se a corrente (em amperes) é I e a resistência (em ohms) é R, então, pela Lei de Ohm:
I = 100 / R.
Se R está aumentando, ache a taxa instantânea de variação de I em relação a R, para:
a) Qualquer resistência R.
[Res.]
Lembrando que:
∆IR = limh→0 {[I(R + h) - I (R)] / h}
Sendo I(R) = 100/R
limh→0 {[100/(R + h) - 100/(R)] / h}
= limh→0 {[100 . (R) - 100 . (R + h)] / [(R + h) . (R)] / h}
= limh→0 {[100R - 100R - 100h] / [(R + h) . (R)] / h}
= limh→0 {- 100h / [(R + h) . (R)] / h}
= limh→0 {- 100 / [(R + h) . (R)]}
= -100 / [(R+0) . R]
= -100 / [R . R]
= -100 / R²
b) Uma resistência de 20 ohms.
[Res.]
Quando R = 20 ohms:
∆IR = -100 / R² = -100 / 20² = -100 / 400 = -1/4 = -0,25 Amper
Exercício:
Qual a taxa de variação da área de uma circunferência em relação ao raio, supondo que este varia, quando temos r = 3cm?
[Res.]
A = 𝜋 . r²
Lembrando que:
∆AR = limh→0 {[A(r + h) - A (r)] / h}
= limh→0 {[𝜋 . (r + h)² - 𝜋 . (r)²] / h}
= limh→0 {[𝜋 . (r² + 2rh + h²) - 𝜋 . r²] / h}
= limh→0 {[𝜋 . r² + 2rh𝜋 + h²𝜋 - 𝜋 . r²] / h}
= limh→0 {[2rh𝜋 + h²𝜋] / h}
= limh→0 {h . [2r𝜋 + h𝜋] / h}
= limh→0 {2r𝜋 + h𝜋}
= 2r𝜋 + 0 . 𝜋
= 2r𝜋
Quando r = 3cm:
∆AR = 2r𝜋 = 2 . 3 . 𝜋 = 6 . 𝜋 = 6𝜋
Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.
Assinar:
Postagens (Atom)