quinta-feira, 24 de dezembro de 2020

Fórmulas importantes da letra M do Kumon de Matemática

Fórmulas importantes da letra M do Kumon de Matemática


Fórmula da distância
  • A distância entre dois pontos A (x1, y1) e B (x2, y2) é
    AB = [(x2 - x1)² + (y2 - y1)²]1/2
    Além disso, a distância entre o ponto de origem O e o ponto A (x1, y1) é
    OA = [(x1)² + (y1)²]1/2

Divisão interna de um segmento de reta
  • Dado o ponto P na reta AB e AP : PB = m : n, o segmento AB é dividido internamente pelo ponto P na razão m : n e o ponto P é chamado de ponto de divisão interna. (m e n são números positivos).

Divisão externa de um segmento de reta
  • Dado o ponto P que está na mesma reta que o segmento AB, mas fora do segmento de reta AB, e AP : PB = m : n, diz-se que o segmento de reta AB é dividido externamente pelo ponto P na razão m : n. O ponto P é chamado de ponto de divisão externa. (m e n são números positivos).

Coordenadas de pontos de divisão interna/externa
  • Dados os pontos A (x1, y1) e B (x2, y2), as coordenadas dos pontos que dividem o segmento de reta AB na razão m:n são:
    Internamente, [(nx1 + mx2) / (m + n), (ny1 + my2) / (m + n)]
    Externamente, [(- nx1 + mx2) / (m - n), (- ny1 + my2) / (m - n)]

Ponto médio
  • As coordenadas do ponto médio M no segmento de reta AB onde A (x1, y1) e B (x2, y2) são dadas por:
    M [(x1 + x2) / 2, (y1 + y2) / 2]

Centro de gravidade do triângulo
  • Dado um ΔABC com vértices A (x1, y1), B (x2, y2) e C (x3, y3), as coordenadas do centro de gravidade G são dadas por:
    G [(x1 + x+ x3) / 3, (y1 + y+ y3) / 3]

Equação da Reta I
  • A equação de uma reta que passa pelo ponto (x1, y1) com gradiente m é
    y - y= m . (x - x1)

Equação da Reta II
  • A equação de uma reta que passa pelos pontos A (x1, y1) e B (x2, y2) é
    yy= (y2 - y1) / (x2 - x1) . (x - x1), quando x1 ≠ x2
    xx1, quando x1 = x2


Condição de paralelismo
  • Para duas retas y = m1 . x + n1 e y = m2 . x + n2, a condição de paralelismo é m1 = m2.

Condição de perpendicularismo
  • Para duas retas y = m1 . x + n1 e y = m2 . x + n2, a condição de perpendicularismo é m1 . m2 = -1.

Distância de um ponto a uma reta
  • A distância d do ponto (x1 , y1 ) à reta ax + by + c = 0 é
    d = |ax1 + by1 + c| / (a² + b²)^(1/2)

Equação da circunferência I
  • A equação da circunferência com centro na origem O e raio r é
    (x - 0)² + (y - 0)² = r²
    x² + y² = r²

Equação da circunferência II
  • A equação de uma circunferência com centro no ponto (a, b) e raio r é
    (x - a)² + (y - b)² = r²

Posição relativa entre uma Circunferência e uma reta
  • Quando a equação quadrática ax² + bx + c = 0 for obtida depois de y ser eliminado de cada equação de uma reta e uma circunferência, considere o discriminante D (= b² - 4ac).
    D > 0: se interceptam em dois pontos distintos.
    D = 0: são tangentes e se interceptam em um único ponto.
    D < 0: não se interceptam.
  • Quando uma equação quadrática está no formato ax² + 2b'x + c = 0, considerar
    D/4 = b'² - ac
Tangente à Circunferência
  • A equação da tangente à circunferência x² + y² = r² no ponto P (x1, y1) é:
    x1 . x + y1 . y = r²

Circunferências tangentes interna ou externamente
  • Considere r1 e r2 (r1 > r2) os raios das circunferências C1 e C2, respectivamente, e d a distância entre as duas circunferências.
    • internamente tangente: d = r1 - r2
    • externamente tangente: d = r1 + r2

Posição relativa entre duas circunferências:
  • Considere r1 e r2 (r1 > r2) os raios das circunferências C1 e C2, respectivamente, e d a distância entre as duas circunferências.
    • Completamente interna: d < r1 - r2
    • Internamente tangente: d = r1 - r2
    • Interseccionam-se em dois pontos: r1 - r2 < d < r1 + r2
    • Externamente tangente: d =r1 + r2 
    • Completamente externa: d > r1 + r2 

Lugar geométrico:
  • A partir das Coordenadas de pontos de divisão interna, dados os pontos A (x1, y1) e B (x2, y2), as coordenadas do ponto que divide internamente o segmento de reta AB na razão m:n são
    [(n . x1 + m . x2) / (m + n), (n . y1 + m . y2) / (m + n)]
  • Das coordenadas de pontos de divisão externa, dados os pontos A (x1, y1) e B (x2, y2), as coordenadas do ponto que divide externamente o segmento de reta AB na razão m:n são
    [(-n . x1 + m . x2) / (m - n), (-n . y1 + m . y2) / (m - n)]

Identidade trigonométrica I:
  • tg A = sen A / cos A
  • sen² A + cos² A = 1

Identidade trigonométrica II:
  • 1 + tg² A = 1 / cos² A
Razões Trigonométricas de 90° - θ:
  • sen (90° - θ) = cos θ
  • cos (90° - θ) = sen θ
  • tg (90° - θ) = 1 / tg θ
Razões Trigonométricas de 180° - θ:
  • sen (180° - θ) = sen θ
  • cos (180° - θ) = - cos θ
  • tg (180° - θ) = - tg θ

Fórmulas de adição:
  • cos (α + β) = cos α . cos β - sen α . sen β
  • cos (α - β) = cos α . cos β + sen α . sen β
  • sen (α - β) = sen α . cos β - cos α . sen β
  • sen (α + β) = sen α . cos β + cos α . sen β
Fórmulas do arco duplo:
  • sen (2α) = 2 . sen α . cos α
  • cos (2α) = cos²α - sen²α
    = 1 - 2 . sen²α = 2 . cos²α - 1
  • tg (2α) = 2 . tg α / (1 - tg² α)
Fórmulas do arco triplo:
  • sen (3α) = 3 . sen α - 4 . sen³α
  • cos (3α) = 4 . cos³α - 3 . cos α
Fórmulas do arco metade:
  • sen² (α/2) = (1 - cos α) / 2
  • cos² (α/2) = (1 + cos α) / 2
  • tg² (α/2) = (1 - cos α) / (1 + cos α)
Teorema do Ângulo Inscrito
  • Dado que os pontos P1, P2, P3, ... que estão na mesma parte da circunferência em relação ao segmento de reta AB, os ângulos <AP1B, <AP2B, AP3B, ... são congruentes (tem a mesma medida).
Diâmetro e Ângulo Inscrito
  • Colocando o ponto P na circunferência no qual o segmento de reta AB é o diâmetro, então <APB = 90°.
Quadrilátero Inscrito na Circunferência
  • Dado que um quadrilátero está inscrito em uma circunferência, a soma dos ângulos opostos é 180°. α + β = 180°.

Lei do Seno
  • a / senA = b / sen B = c / senC = 2R

Conversão de asinθ + bcosθ
  • asenθ + bcosθ = (a² + b²)^(1/2) . sen (θ + α)
  • onde cos α = a / (a² + b²)^(1/2), sen α = b / (a² + b²)^(1/2)


 Transformação de Produto em Soma/Diferença

  • senα . cosβ = 1/2 . [sen (α + β) + sen (α - β)]
  • cosα . senβ = 1/2 . [sen (α + β) - sen (α - β)]
  • cosα . cosβ = 1/2 . [cos (α + β) + cos (α - β)]
  • senα . senβ = - 1/2 . [cos (α + β) - cos (α - β)]

Identidades

  • sen(α + β) + sen(α - β) = 2 . senα . cosβ
  • sen(α + β) - sen(α - β) = 2 . cosα . senβ
  • cos(α + β) + cos(α - β) = 2 . cosα . cosβ
  • cos(α + β) - cos(α - β) = -2 . senα . senβ

Transformação de Soma/Diferença em Produto

  • senA + sen= 2 . sen[(A+B)/2] . cos[(A-B)/2]
  • senA - senB = 2 . cos[(A+B)/2] . sen[(A-B)/2]
  • cosA + cosB = 2 . cos[(A+B)/2] . cos[(A-B)/2]
  • cosA - cosB = -2 . sen[(A+B)/2] . sen[(A-B)/2]

Lei do Cosseno

  • Dado o ΔABC,
    • a² = b² + c² - 2.b.c.cosA
    • b² = c² + a² - 2.c.a.cosB
    • c² = a² + b² - 2.a.b.cosC
  • cosA = (b² + c² - a²) / 2.b.c
  • cosB = (c² + a² - b²) / 2.c.a
  • cosC = (a² + b² - c²) / 2.a.b

Área do triângulo

  • S = 1/2 . b . c . senA = 1/2 . c . a . sen= 1/2 . a . b . senC

Lei do Seno

  • a / senA = b / sen B = c / senC = 2R
    • a : b : c = 2R senA : 2R senB : 2R senC
      =
      senA : senB : senC
    • Exemplo:
      • a : b : c = 5 : 7 : 8
        a = 5k, b = 7k, c= 8k

Relação entre os Ângulos e os Lados de um triângulo

  • Para qualquer triângulo:
    • A relação entre as medidas dos dois lados corresponde à relação entre os ângulos opostos (o ângulo oposto ao maior lado é o maior ângulo).

Fórmula de Heron

  • A área S do ΔABC também pode ser determinada utilizando-se a seguinte fórmula:
    • S = (s . (s - a) . (s - b) . (s - c) ) ^ (1/2), na qual s = (a + b + c) / 2

Área de um Triângulo com Círculo Inscrito

  • Seja S a área do ΔABC, e seja I o centro da circunferência inscrita e r o raio.
    S = ΔIBC + ΔICA + ΔIAB
    = 1/2 . a.r + 1/2 . b.r + 1/2 . c.r
    =
    1/2 . r (a + b + c)
Tetraedros e Cones
Uma pirâmide triangular com quatro faces que sejam triângulos equiláteros é chamada de tetraedro regular. Seja V o volume de uma pirâmide ou de um cone cuja base tem área S e altura h. Então:
V = 1/3 . S . h.


    Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

    Nenhum comentário:

    Curso Growatt - Aula 04 - Conexão CC