sexta-feira, 24 de maio de 2019

Lembrete para prova de Cálculo 1

Lembrete para prova de Cálculo 1


Relações de Trigonometria
Relações trigonométricas
sen x = 1 / cosec x
cos x = 1 / sec x
tan x = sen x / cos x = 1 / cot x
cosec x = 1 / sen x
sec x = 1 / cos x
cot x = cos x / sen x = 1 / tan x

Como seno, cosseno e tangente são bem conhecidas, podemos resumir mais:
Relações trigonométricas
cosec x = 1 / sen x
sec x = 1 / cos x
cot x = 1 / tg x

Como a cotangente é o inverso da tangente, e essa é uma relação fácil de lembrar, podemos reduzir ainda mais o resumo:
Relações trigonométricas
cosec x = 1 / sen x
sec x = 1 / cos x

Identidades trigonométricas
sen² x + cos² x = 1
1 + tg² x = sec² x
1 + cotg² x = cosec² x
sen² x = [1 - cos (2x)] / 2
cos² x = [1 + cos (2x)] / 2
sen (2x) = 2 . sen x . cos x
2 . sen x . cos y = sen (x - y) + sen (x + y)
2 . sen x . sen y = cos (x - y) - cos (x + y)
2 . cos x . cos y = cos (x - y) + cos (x + y)
1 ± sen x = 1 ± cos (𝜋/2 - x)


Derivadas
Derivadas básicas
y = un ⇒ y' = n . un-1 . u' (regra básica)
y = u . v ⇒ y' = (regra do produto)
y = u / v ⇒ y' = (regra do quociente)

Derivadas para potências (são todas a mesma coisa - reflita)
y = au ⇒ y' = au . ln a . u', (a>0, a ≠ 1)
  • y = eu ⇒ y' = eu . ln e . u' = eu . u'
y = uv ⇒ y' = v . uv-1 . u' + uv . ln u . v'


Derivadas de logarítmos
y loga u ⇒ y' = u' / u . loga e
  • Como loga e = ln e / ln a = 1 / ln a:
    y loga u ⇒ y' = u' / u . loga e = u' / u . 1 / ln a = u' / (u . ln a)
y = ln u ⇒ y' = 1 / u . u'

Derivadas trigonométricas
y = sen u ⇒ y' = u' . cos u
y = cos u ⇒ y' = -u' . sen u
y = tg u ⇒ y' = u' . sec² u
y = cotg u ⇒ y' = -u' . sec² u
y = sec u ⇒ y' = u' . sec u . tg u
y = cosec u ⇒ y' = -u' . cosec u . cotg u
y = arcsen u ⇒ y' = u' / √(1 - u²)
y = arccos u ⇒ y' = -u  / √(1 - u²)
y = arctg u ⇒ y' = u' / (1 + u²)
y = arccotg u ⇒ y' = -u' / (1 + u²)
y = arcsec u, |u| ≥ 1 ⇒ y' = u' / (|u| .√(u² - 1), |u| > 1
y = arccosec u, |u| ≥ 1 ⇒ y' = -u' / (|u| .√(u² - 1), |u| > 1



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

quarta-feira, 22 de maio de 2019

Cálculo 1 - 22/05/2019

Cálculo 1 - 22/05/2019

Previsão de aula: 20h30min às 22h00min
Início da aula: 20h38min
Término da aula: 22h00min aproximadamente
Taxa de aproveitamento: 82min/90min = 91,11%


Exercícios:

Resolva as derivadas

a) y = elog(3x+1)

Resolução minha
y = elog(3x+1)


Aplicando ln nos termos

ln y = ln elog(3x+1)
ln y = log (3x+1) . ln e
ln y = log (3x+1) . 1
ln y = log (3x+1)


Derivando

1/y . dy/dx = 3/(3x+1) . log e . 3
dy/dx = y . [3/(3x+1) . log e] . 3
dy/dx = elog(3x+1) . [3/(3x+1) . log e] . 3
dy/dx = elog(3x+1) . [9/(3x+1) . log e]

Utilizando as seguintes regras de derivação:
y = ln u ⇒ y' = 1/u . u'
y = log u ⇒ y' = u'/u . loga e


Porém, a professora deseja a resposta obtida a partir das seguintes regras de derivação:
y = eu ⇒ y' = eu . u'
Como a função envolve log, também será necessária a seguinte regra de derivação:
y = loga u ⇒ y' = u'/u . loga e

y = elog(3x+1)
y' = y = elog(3x+1) . 3/(3x+1) . log10 e . 3
y' = y = elog(3x+1) . 9/(3x+1) . log10 e

Observação: o 3 no final é devido à regra da cadeia, da derivação do termo (3x+1).

Mais um adicional:
log10 e = 1/ ln 10

Assim:
y' = y = elog(3x+1) . 9/(3x+1) . log10 e  
y' = y = elog(3x+1) . 9/[(3x+1) . ln 10]

Essa era a forma de resposta esperada pela professora.


b) y = 5[2x² . sen(x)]

Resolução minha
Utilizando a seguinte regra de derivação:
y = uv ⇒ y' = v . uv-1 . u' + uv . (ln u) . v'

y = 5[2x² . sen(x)]

y' = [2x² . sen(x)] . 5[2x² . sen(x) - 1] . 0 + 5[2x² . sen(x)] . ln 5 . [4x . sen(x) + cos(x) . 2x²]
y' = 0 + 5[2x² . sen(x)] . ln 5 . [4x . sen(x) + cos(x) . 2x²]
y' = 5[2x² . sen(x)] . ln 5 . [4x . sen(x) + 2x² . cos(x)]


c) y³ + y = x

Resolução por derivação implícita.
3y² dy/dx + dy/dx = 1

dy/dx (3y² + 1) = 1

dy/dx = 1 / (3y² + 1)



d) y = arctg (2x/3) + arccotg (3/2x)

Resolução minha
Utilizando as seguintes regras de derivação:
y = arctg u ⇒ y' = +u' / (1 + u²)
y = arccotg u ⇒ y' = -u' / (1 + u²)


y = arctg (2x/3) + arccotg (3/2x)
y' = +(2/3) / (1 + 4x² / 9) + [-3/2 . (-1) . x-2] / [1 + 9/ (4x²)]
y' = +(2/3) / [(9 + 4x²) / 9] + [3/(2x²)] / [(4x² + 9)/ (4x²)]
y' = +(2/3) . 9 / (9 + 4x²) + 3/(2x²) . (4x²) / (4x² + 9)
y' = +6 / (9 + 4x²) + 6 / (4x² + 9)
y' = +12 / (9 + 4x²)


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

terça-feira, 21 de maio de 2019

Cálculo 1 - 21/05/2019

Cálculo 1 - 21/05/2019
Terça-feira

Previsão de aula: 20h30min às 22h00min
Início da aula: aproximadamente 20h30min
Encerramento: 22h00min
Taxa de aproveitamento: 100% aproximadamente


Exercícios

Resolva as derivadas abaixo:

a) y = sen(x) . cos(x)

Resolução minha:

y' = cos(x) . cos(x) + (-sen(x)) . sen(x)
y' = cos²(x) - sen²(x)


b) y = x³/3 . ln (x) - x³/9

Resolução minha:
y' = x² . ln(x) + 1/x . 1 . x³/3 - 1/3 . x²
y' = x² . ln(x) + x²/3 - x²/3
y' = x² . ln(x)


c) y = 8 . sen(x) . cos(x) . tg8(x) / √x

Resolução minha:

y = 8 . sen(x) . cos(x) . tg8(x) . x-1/2

1/y . dy/dx = 1/8 . 0 + 1/sen(x) . cos(x) + 1/cos(x) . (-sen(x)) + 8 . 1/tg(x) . 1 . sec²(x) - 1/2x . 1

1/y . dy/dx = cos(x)/sen(x) - sen(x)/cos(x) + 8 sec²(x)/tg(x) - 1/(2x)

dy/dx = 8 . sen(x) . cos(x) . tg8(x) / √x . {cotg(x) - tg(x) + 8 / [sen(x).cos(x)] - 1/(2x)}


2) Encontre:
∂f/∂x e ∂f/∂y

 f(x,y) = (x³ + y²) / (x² + y²)

Resolução minha:
∂f/∂x

∂f/∂x = [3x² . (x² + y²) - 2x . (x³ + y²)] / (x² + y²)²

∂f/∂x = [3x4 + 3x²y² - 2x4 - 2xy²] / (x² + y²)²

∂f/∂x = [x4 + 3x²y² - 2xy²] / (x² + y²)²


∂f/∂y

∂f/∂y = [2y . (x² + y²) - 2y . (x³ + y²)] / (x² + y²)²

∂f/∂y = [2x²y + 2y3 - 2yx³ - 2y³] / (x² + y²)²

∂f/∂y = [2x²y - 2yx³] / (x² + y²)²


3) Determine, caso existam, as assíntotas verticais e horizontais, usando limite.

f(x) = √(x² + 1) / (3x - 5)

Lembrando que:
* assíntota vertical ocorre quando o denominador = 0.
* assíntotas horizontais tem que aplicar o limite para ∞ e para -∞.

Resolução minha:

Material de apoio para resolução da questão:
http://www.alessandrosantos.com.br/emanuel/usp/calculo1/Assintota.PDF

Assíntota vertical
Igualando o denominador 3x-5 a 0:
3x-5 = 0
x = 5/3

Calculando o limite para x igual a 5/3 pela direita:
limx→5/3+ √(x² + 1) / (3x - 5) = +∞


Calculando o limite para x igual a 5/3 pela esquerda:
limx→5/3- √(x² + 1) / (3x - 5) = -∞

Como os limites da função pela esquerda e pela direita com x tendendo a 5/3 foram para o infinito positivo e negativo, podemos concluir que x = 5/3 é uma assíntota vertical da função.


Assíntota horizontal
Para encontrar a assíntota horizontal é necessário verificar o comportamento da função quando ela tende a +∞ e a -∞.

Calculando os limites quando a função tende a +∞ e a -∞:
f(x) = √(x² + 1) / (3x - 5)

Do jeito que está, é difícil calcular o limite da função. Modificando a função para facilitar as operações:
f(x) = √(x² + 1) / (3x - 5)
f(x) = √[x²(1 + 1/x²)] / [x(3 - 5/x)]
f(x) = ± x√(1 + 1/x²) / [x(3 - 5/x)]
f(x) = ± √(1 + 1/x²) / (3 - 5/x)


Calculando os limites quando a função tende a +∞:
limx→+ √(x² + 1) / (3x - 5)
= limx→+ √[x²(1 + 1/x²)] / [x(3 - 5/x)]
= limx→+ ± x√(1 + 1/x²) / [x(3 - 5/x)]
= limx→+ ± √(1 + 1/x²) / (3 - 5/x) = ± 1/3


Calculando os limites quando a função tende a -∞:
limx→- √(x² + 1) / (3x - 5)
= limx→- √[x²(1 + 1/x²)] / [x(3 - 5/x)]
= limx→- ± x√(1 + 1/x²) / [x(3 - 5/x)]
= limx→- ± √(1 + 1/x²) / (3 - 5/x) = ± 1/3

A partir dos limites calculados, é possível observar que a função apresenta duas assíntotas horizontais:
y = 1/3 e y = -1/3.

Gráfico da função √(x² + 1) / (3x - 5) obtido com o GeoGebra


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

segunda-feira, 20 de maio de 2019

carpindo com rocadeira costal



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Faca da roçadeira 01



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER21 - Esboço de gráficos: Exemplo completo I



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER20 - Derivadas: como esboçar gráficos passo a passo



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - 04 segunda deriv extremos



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER18 - Derivada Segunda



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER16 - Máximos e mínimos relativos - Exemplo I



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER14 - Derivada primeira



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Curso Growatt - Aula 04 - Conexão CC