sexta-feira, 10 de maio de 2019

Cálculo 1 - 10/05/2019

Cálculo 1 - 10/05/2019

Previsão de aula: 18h45min às 20h15min
Início da aula: 18h54min
Encerramento da aula: 20h01min
Taxa de aproveitamento: 67min / 90min = 74,44%

Observação pessoal: muito tempo parado durante a aula.


Derivação implícita

y = √(x³+1)
y = x . sen(x)

y é uma função explícita de x

Algumas funções são descritas implicitamente por uma relação entre x e y, tais como:

x² - y² = -1
x² + y² = 25
x³ - y³ - 9xy = 0

Dizemos que y é uma função implícita de x, ou que y = f(x) é definida implicitamente pela equação dada.


Exemplo:
A função f(x) = 3x² - 2 é definida implicitamente pela equação: 6x² - 2y = 4.

Substituindo y = f(x) na equação, temos uma identidade:
6x² - 2(3x² - 2) = 4
6x² - 6x² + 4 = 4
4 = 4


Exemplo:
Para a equação x² + y² = 25 temos que seu gráfico é a circunferência de centro na origem e raio 5.
Resolvendo essa equação em relação a y, temos:

y² = 25 - x²
y = ± √(25 - x²)


Logo, temos duas funções f e g definidas implicitamente por essa equação.
f(x) = √(25 - x²)
Gráfico de √(25 - x²) obtido com o GeoGebra


g(x) = - √(25 - x²)
Gráfico de -√(25 - x²) obtido com o GeoGebra


Os gráficos são partes da circunferência definida por elas.
Gráfico de √(25 - x²) e -√(25 - x²) obtido com o GeoGebra



Exercícios:

Exemplo:


Determine dy/dx se x² + y² = 25
d/dx (x² + y²) = d/dx (25)
2x + 2y . dy/dx = 0
2y dy/dx = -2x
dy/dx = -2x / 2y
dy/dx = -x/y


Exercícios
Encontre dy/dx

1) x³ + y³ = 8

3x² + 3y² dy/dx = 0
3y² dy/dx = -3x²
dy/dx = -x²/y²


2) 4x² - 9y² = 17

8x - 18y dy/dx = 0
-18y dy/dx = -8x
dy/dx = 4x/9y


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - aula 3 taxas relac



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - aula 2 taxas relac



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! DER13 - Taxas relacionadas



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

quarta-feira, 8 de maio de 2019

Cálculo 1 - 08/05/2019

Cálculo 1 - 08/05/2019

Faltei à aula - confundi a Quarta-feira com a Quinta-feira. Peguei matéria com colega de sala.
Taxa de aproveitamento: 0%

Regra da Cadeia

Se f e g são diferenciáveis:
F'(x) = f'(g(x)) . g'(x)


Determine f'(x) se f(x)= (x² - 3x + 8)³

y = u³
u = x² - 3x + 8

dy/dx =dy/du . du/dx

dy/dx = 3 (x² - 3x + 8)² . (2x - 3)


Exercícios
1) Determine y' se y = (6x-7)³ . (8x²+9)²

Resolução minha:
seja:
u = (6x-7)³
v = (8x²+9)²

y = u . v
Assim, pode-se derivar pela regra do produto:
y' = u' . v + v' . u

Como:
u' = 3 (6x-7)² . 6 = 18 (6x-7)²
v' = 2 (8x²+9) . 16x = 32x (8x²+9)

y' = 18 (6x-7)² . (8x²+9)² + 32x (8x²+9) . (6x-7)³


2) Encontre a derivada de g(x) = tg (5-sen(2x))

Resolução minha:
seja u = (5 - sen(2x))
u' =  - cos (2x) . 2 = - 2 . cos(2x)

g'(x) = u' . sec² u
g'(x) = - 2 . cos(2x) . sec² (5 - sen(2x))
g'(x) = - 2 . cos(2x) . 1/cos² (5 - sen(2x))


3) Calcule a derivada de y = cot² (s³-25)

Resolução minha:
y = cot (s³-25) . cot (s³-25)

Seja u = cot (s³-25)
u' = -3s² . csc² (s³-25)

y = u²
y' = 2 . u . u'
y' = 2 . cot (s³-25) . -3s² . csc² (s³-25)



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Fazendo Slime com Alice



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Curso Growatt - Aula 04 - Conexão CC