sexta-feira, 29 de março de 2019

Cálculo I - 29/03/2019

Cálculo I - 29/03/2019 - (Sexta-feira)

Previsão de aula: 18h45min às 20h15min
Início da aula: 19h00min
Término da aula: 20h10min
Taxa de aproveitamento: 77,77%


Exercícios de Limites Trigonométricos

Lembrando que
limx→0 [sen(x)/x] = 1

1) Encontre o limite:

a) limx→0 [sen(3x)/8x]

[Res.]
limx→0 [sen(3x)/8x]
= limx→0 {[3/8 . sen(3x)] / [3/8 . (8x)]}
= limx→0 {[3/8 . sen(3x)] / [3x]}
= limx→0 [3/8 . sen(3x)/(3x)]
= limx→0 3/8 . limx→0 [sen(3x)/(3x)]
= 3/8 . 1
= 3/8


b) limx→0 [sen(3x)/sen(2x)]

[Res.]
limx→0 [sen(3x)/sen(2x)]
=  limx→0 {[3/2 . sen(3x)/3x] /[3/2 . sen(2x)/3x]}
=  limx→0 {[3/2 . sen(3x)/3x] /[sen(2x)/2x]}
=  limx→0 (3/2) . limx→0 [sen(3x)/3x] / limx→0 [sen(2x)/2x]
=  3/2 . 1 / 1
= 3/2


Limites infinitos

Ao investigarmos limx→a- f(x) ou limx→a+ f(x), pode ser que o valor de f(x) ou aumente ou decresça sem limite à medida em que x se aproxima de a.


Exemplos: 
Seja f(x) = 1 / (x - 2). Estude limx→2 f(x).
Gráfico de f(x) = 1 / (x - 2), obtido com o GeoGebra e o Krita.
Quando x tende a 2 pela direita, f(x) aumenta sem limite. Denotamos este fato escrevendo:
limx→2+ [1/(x - 2)] = + ∞.

Por outro lado, quando x tende a 2 pela esquerda, f(x) decresce sem limite. Daí, escrevemos:
limx→2- [1/(x - 2)] = - ∞.


Se os limites laterais são distintos, não existe limite no ponto: ∄ limx→2 f(x).


Definição:
Seja f uma função definida em ambos os lados de a, exceto possivelmente em x = a.

Escrevemos limx→a f(x) = + ∞ se pudermos fazer os valores de f(x) ficarem arbitrariamente grandes com x próximo de a, mas x ≠ a.

Escrevemos limx→a f(x) = - ∞ se pudermos fazer os valores de f(x) ficarem arbitrariamente pequenos com x próximo de a, mas x ≠ a.


Exercícios:
* limx→-∞ (2x5 - 5x³ + 1)

[Res.]
Gráfico de f(x) = 2x5 - 5x³ + 1, obtido com o GeoGebra e o Krita.


limx→-∞ (2x5 - 5x³ + 1)
= limx→-∞ 2x5 - limx→-∞ 5x³ + limx→-∞ 1
= [limx→-∞ 2x]5 - [limx→-∞ 5x]³ + 1
= [2 . limx→-∞ x]5 - [5 . limx→-∞ x]³ + 1
= [2 . (-∞)]5 - [5 . (-∞)]³ + 1
= [-∞]5 - [-∞]³ + 1
Como o limite tendeu ao infinito (negativo), iremos considerar apenas o termo de maior expoente para encontrar o limite da função. Assim:
limx→-∞ (2x5 - 5x³ + 1) = -∞


* limx→+∞ [(3 - x) / √(5 + 4 . x²)]

[Res.]
Gráfico de f(x) = (3 - x) / (√(5 + 4 . x²)), obtido com o GeoGebra e o Krita.

limx→+∞ [(3 - x) / √(5 + 4 . x²)]
= limx→+∞ [(3 - x) / √(5 + 4 . x²) . √(5 + 4 . x²) / √(5 + 4 . x²)]
= limx→+∞ {[(3 - x) . √(5 + 4 . x²)] / (5 + 4 . x²)}
= limx→+∞ {[(3 - x) . √(5 + 4 . x²)] / [x².(5/x² + 4 . x²/x²)]}
= limx→+∞ {[(3 - x) . √(5 + 4 . x²)] / [x².(5/x² + 4)]}
= limx→+∞ {[x(3/x - x/x) . x√(5/x² + 4 . x²/x²)] / [x².(5/x² + 4)]}
= limx→+∞ {[x²(3/x - 1) . √(5/x² + 4 . 1)] / [x².(5/x² + 4)]}
= limx→+∞ {[x²(3/x - 1) . √(5/x² + 4)] / [x².(5/x² + 4)]}
= limx→+∞ {[(3/x - 1) . √(5/x² + 4)] / [(5/x² + 4)]}
= {[(0 - 1) . √(0 + 4)] / [(0 + 4)]}
= {[(- 1) . √4] / [4]}
= {[-√4] / [4]}
= {[-2] / [4]}
= -2 / 4
= -1 / 2


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Me Salva! LIM09 - Limites no infinito e assíntotas horizontais



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

CALC1S4 06 Limites Infinitos



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

CALC1S4 05 Exemplos



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

CALC1S4 04 Consequências



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

CALC1S4 03 Limites Trigonometricos Fundamentais



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

CALC1S4 02 Limites Laterais Parte 2



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

CALC1S4 01 Limites Laterais



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

quinta-feira, 28 de março de 2019

Production Caprine



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Ovinos



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

quarta-feira, 27 de março de 2019

2ª Lista de Cálculo I - Propriedades das funções

2ª Lista de Cálculo I - Propriedades das funções

Revisão breve:

Função:
  • Sobrejetora: quando todos os elementos do contradomínio estão relacionados a pelo menos um elemento do domínio.
  • Injetora: quando cada elemento da imagem está relacionada a um único elemento do domínio.
  • Bijetora: quando a função é sobrejetora e injetora.
Referência:


  1. Obtenha os intervalos nos quais a função dada é crescente e nos quais é decrescente, indicando pontos de máximo e de mínimo para as figuras a seguir:
    a)

    [Res.]
    Função crescente: ]-,-4], [-1,3]
    Função decrescente: [-4,-1], [3,∞[
    Extremos locais
    Pontos de máximo: y = 2 em x = -4, 3
    Ponto de mínimo: y = -2 em x = -1
    Extremos absolutosPontos de máximo: y = 2 em x = -4, 3
    Ponto de mínimo: não tem

    b)

    [Res.]
    Função crescente: ]-, -2], [1, ]
    Função decrescente: [-2, 1]
    Extremos locais
    Pontos de máximo: y = 3 em x = -2
    Ponto de mínimo: y = -2 em x = 1
    Extremos absolutosPontos de máximo: não tem
    Ponto de mínimo: não tem

    c)

    [Res.]
    Função crescente: [-1, -0], [1,[
    Função decrescente: ], -1], [0, 1]
    Extremos locais
    Pontos de máximo: y = 0 em x = 0
    Ponto de mínimo: y = -1 em x = -1, 1
    Extremos absolutosPontos de máximo: não tem
    Ponto de mínimo: y = -1 em x = -1, 1
  2. Determine se f é par, ímpar ou nem par nem ímpar.
    a) f(x) = 5x³ + 2x
    [Res.]
    f(1) = 5+2 = 7
    f(-1) = -5 -2 = -7
    Como f(-1) é -f(1), a função é ímpar.

    b) f(x) = |x| - 3
    [Res.]
    f(1) = 1 - 3 = -2
    f(-1) = 1 - 3 = -2
    Como f(1) = f(-1), logo a função é par.

    c) f(x) = (8x³ - 3 x²)³
    [Res.]
    f(1) = (8 - 3)³ = 5³ = 125
    f(-1) = (-8 - 3)³ = (-11)³ = -1331
    Como f(1) ≠ f(-1) e f(1) ≠ -f(1), logo a função não é nem par nem ímpar.

    d) f(x) = (3x^4 + 2x² - 5)^(1/2)
    [Res.]
    f(1) = (3 + 2 - 5)^(1/2) = 0
    f(-1) = (3 + 2 - 5)^(1/2) = 0
    Como f(1) = f(-1), logo a função é par.

    e) f(x) = 6x^5 - 4x³ + 2x
    [Res.]
    f(1) = 6 - 4 + 2 = 4
    f(-1) = -6 + 4 - 2 = -4
    Como f(1) = -f(-1), logo a função é ímpar.

    f) f(x) = x (x+5)
    [Res.]
    f(1) = 1 (1+5) = 6
    f(-1) = -1 (-1 + 5) = -4
    Como f(1) ≠ f(-1) e f(1) ≠ -f(1), logo a função não é nem par nem ímpar.
  3. Seja f: A  B. Sabe-se que o conjunto A tem (2p - 2) elementos e o conjunto B tem (p+3) elementos. Sabendo-se que f é injetora, então podemos afirmar que:
    a) 1 < p ≤ 5
    b) 5 < p ≤ 7
    c) 7 < p ≤ 8
    d) 8 < p ≤ 10
    e) p ≥ 10
    [Res.]
    Como uma função é Injetora quando cada elemento da imagem está relacionada a um único elemento do domínio, logo:
    2p - 2 ≤ p + 3
    2p - 2 + 2 ≤ p + 3 + 2
    2p ≤ p + 5
    p ≤ 5

    Como 2p - 2 ≤ 0:
    0 ≤ 2p - 2
    2 ≤ 2p
    1 ≤ p

    Assim:
    1 ≤ p ≤ 5
  4. Os gráficos abaixo representam funções de IR em IR. Verifique se elas são ou não funções sobrejetoras, injetoras ou bijetoras. Justifique sua resposta.
    a)

    [Res.]
    f(1) = 0
    f(-1) = -2
    Como f(1) ≠ f(-1) e f(1) ≠ -f(1), logo a função não é nem par nem ímpar.
    Como para cada y existe apenas um valor de x, a função é injetora.
    Como todos os elementos do contradomínio estão relacionados a pelo menos um elemento do domínio, a função é sobrejetora.
    Como a função é injetora e sobrejetora, ela é bijetora.

    b)

    [Res.]
    Como para cada x não existe apenas um valor de y, a função não é injetora.
    Como todos os elementos do contradomínio não estão relacionados a pelo menos um elemento do domínio, a função não é sobrejetora.

    c)

    [Res.]
    Como para cada y não existe apenas um valor de x, a função não é injetora.
    Como todos os elementos do contradomínio não estão relacionados a pelo menos um elemento do domínio, a função não é sobrejetora.
  5. Determine o conjunto B de modo que a sentença f(x) = x² defina uma função sobrejetora de A = [-3,4] em B. Nestas condições podemos dizer que f é bijetora?

    [Res.]
    Calculando
    f(-3) = (-3)² = 9
    f(-2) = (-2)² = 4
    f(-1) = (-1)² = 1
    f(0) = (0)² = 0
    f(1) = (1)² = 1
    f(2) = (2)² = 4
    f(3) = (3)² = 9
    f(4) = (4)² = 16

    Logo, B = [0, 16].
    Como cada elemento da imagem não está relacionado a um único elemento do domínio, a função não é injetora. Logo, ela não é bijetora.
  6. Uma função f é dada por uma tabela de valores. Determine se f é injetora em cada caso.
    a)

    [Res.]
    Como cada elemento da imagem não está associado a apenas um elemento do domínio, logo a função não é injetora.

    b)

    [Res.]
    Como cada elemento da imagem está associado a apenas um elemento do domínio, a função é injetora.
  7. Uma função f é dada por meio de descrição verbal. Determine se f é injetora.
    a) f(t) é a altura de uma bola t segundos após ser chutada.
    [Res.]
    Como cada elemento da imagem não está associado a apenas um elemento do domínio, logo a função não é injetora (tomando-se apenas os eixos x e y como coordenadas parabólicas da bola).

    b) f(t) é a sua altura com t anos de idade.
    [Res.]
    Como cada elemento da imagem está associado a apenas um elemento do domínio, logo a função é injetora.


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.