Ave Maria, cheia de graça, o Senhor é convosco, bendita sois vós entre as mulheres e bendito é o fruto do vosso ventre, Jesus. Santa Maria, Mãe de Deus, rogai por nós pecadores, agora e na hora da nossa morte. Amém.
sábado, 13 de março de 2021
quarta-feira, 10 de março de 2021
O Terço da Misericórdia
O Terço da Misericórdia
(Pela recitação deste Terço agrada-Me dar tudo o que Me peçam. (Diário de Santa Faustina, n° 1541)
Jesus, eu confio em Vós!
Assim falou o próprio Jesus Cristo a Santa Faustina Kowalska:
Minha filha, exorta as almas a rezarem este Terço que te dei. Pela recitação deste Terço agrada-Me das tudo o que Me peçam. Quando os pecadores empedernidos o recitarem, encherei de paz as suas almas, e a hora da morte deles será feliz.
Quando a alma vir e reconhecer a gravidade de seus pecados, quando se abrir diante dos seus olhos todo o abismo de miséria em que mergulhou, que não se desespere, mas antes se lance com confiança nos braços da minha misericórdia, como uma criança no abraço da sua querida mãe.
Essas almas têm prioridade no meu Coração compassivo, elas têm primazia à minha misericórdia. Diz que nenhuma alma que tenha invocado a minha misericórdia se decepcionou ou experimentou vexame. Tenho predileção especial pela alma que confiou na minha bondade.
Escreve que, quando recitarem esse Terço junto aos organizadores, Eu Me colocarei entre o Pai e a alma agonizante, não como juiz, mas como Salvador misericordioso (Diário de Santa Faustina, n° 1541).
As almas que rezarem este Terço serão envolvidas pela minha misericórdia durante a sua vida e, de modo particular, na hora da morte (Diário de Santa Faustina, n° 754).
É preciso divulgar a mensagem da misericórdia
Jesus pediu insistentemente uma grande divulgação da mensagem sobre a sua misericórdia: "Minha filha, não te canses de divulgar a minha misericórdia; consolarás com isso o meu Coração, que arde com a chama de compaixão para com os pecadores.
Diz aos meus sacerdotes que os pecadores empedernidos se arrependerão diante das palavras deles, quando falarem da minha insondável misericórdia, da compaixão que tenho para com eles no meu Coração" (Diário de Santa Faustina Kowalska, n° 1521).
Nosso Senhor promete estar sempre ao lado, na vida e na morte, de quem divulgar a devoção à Divina Misericórdia:
"As almas que divulgarem o culto da minha misericórdia, Eu as defendo por toda a vida como uma terna mãe defende seu filhinho e, na hora da morte, não serei Juiz para elas, mas sim o Salvador misericordioso. Nessa última hora, a alma nada em sua defesa, além da minha misericórdia. Feliz a alma que, durante a vida, mergulhou na fonte da misericórdia, porque não será atingida pela justiça" (Diário de Santa Faustina Kowalska, n° 1075).
Modo de rezar o Terço da Misericórdia
O próprio Jesus Cristo ensinou Santa Faustina a rezar o Terço da Misericórdia: "Tu recitarás por meio do Terço do Rosário" (Diário de Santa Faustina, n° 476).
Antes de começar, reza-se o Pai-nosso, a Ave-Maria e o Credo.
1- Nas contas do Pai-Nosso reza-se a seguinte oração:
Eterno Pai, eu Vos ofereço o Corpo e o Sangue, a Alma e a Divindade de vosso diletíssimo Filho, Nosso Senhor Jesus Cristo, em expiação dos nossos pecados e dos do mundo inteiro.
2 - Nas contas de Ave-Maria reza-se a seguinte oração:
Pela sua dolorosa paixão, tende misericórdia de nós e do mundo inteiro.
No fim do Terço, rezar três vezes:
Deus Santo, Deus Forte, Deus Imortal, tende piedade de nós e do mundo inteiro.
As promessas do Terço da Misericórdia
Assim falou o próprio Jesus Cristo a Santa Faustina Kowalska:
Minha filha, exorta as almas a rezarem este Terço que te dei. Pela recitação deste Terço agrada-Me dar tudo o que Me peçam. Quando os pecadores empedernidos o recitarem, encherei de paz as suas almas, e a hora da morte deles será feliz.
Quando a alma vir e reconhecer a gravidade de seus pecados, quando se abrir diante dos seus olhos todo o abismo de miséria em que mergulhou, que não se desespere, mas antes se lance com confiança nos braços da minha misericórdia, como uma criança no abraço da sua querida mãe.
Essas almas têm prioridade no meu Coração compassivo, elas têm primazia à minha misericórdia. Diz que nenhuma alma que tenha invocado a minha misericórdia se decepcionou ou experimentou vexame. Tenho predileção especial pela alma que confiou na minha bondade.
Escreve que, quando recitarem esse Terço junto aos agonizantes, Eu Me colocarei entre o Pai e a alma agonizante, não como Juiz, mas como Salvador misericordioso (Diário de Santa Faustina, n° 1541).
As almas que rezarem este Terço serão envolvidas pela minha misericórdia durante a sua vida e, de modo particular, na hora da morte (Diário de Santa Faustina, n° 754).
Santa Faustina e São João Paulo II
Maria Faustina Kowalska nasceu a 25 de agosto de 1905 no pequeno povoado de Glogowiec, no interior da Polônia. Aos vinte anos entrou para a Congregação de Nossa Senhora da Misericórdia, na cidade de Cracóvia.
Durante os anos turbulentos entre a primeira e a segunda guerra mundial, ela recebeu as revelações do próprio Nosso Senhor Jesus Cristo sobre a Divina Misericórdia.
Em 5 de outubro de 1938, aos 33 anos, Faustina Kowalska faleceu devido a uma tuberculose. Após a sua morte, a devoção à Divina Misericórdia espalhou-se pelo mundo inteiro.
São João Paulo II foi um grande devoto da Divina Misericórdia. Em 1967, quando era Arcebispo de Cracóvia, o então Cardeal Karol Wojtyla concluiu a primeira etapa do processo de beatificação de Faustina.
Posteriormente, já na condição de Papa, elevou Santa Faustina à honra dos altares: em 1993 a beatificou e em 2000 a canonizou.
"A humanidade não encontrará a paz enquanto não se voltar, com confiança, para a minha misericórdia" (300).
Fonte: Divulgação da Associação Cultural e Artística Nossa Senhora das Graças.
sábado, 6 de março de 2021
Como Lidar Com Pensamentos Ruins e Sentimentos Decorrentes do Medo | Mar...
Notas minhas:
- Mente subconsciente
- hábitos, crenças
- O subconsciente não sabe o que é certo ou errado
- Eu não peço, eu mando: forma imperativa de lidar com o subconsciente
- Selecionar melhor os pensamentos
- A mente funciona através de imagens
- Reverter os pensamentos negativos em pensamentos positivos
- Reprogramar o inconsciente usando a tela mental:
- gravar mensagens na tela mental três vezes por dia, por 60 dias consecutivos
- Decrete: eu sou
- Repetir, repetir, repetir
- 1: sair da dualidade
2: reverter situações negativas em positivas
3: decretar: eu sou
4: fazer visualizações - A imaginação supera o conhecimento
sábado, 27 de fevereiro de 2021
quarta-feira, 17 de fevereiro de 2021
segunda-feira, 8 de fevereiro de 2021
segunda-feira, 1 de fevereiro de 2021
Fórmulas importantes da letra N do Kumon de Matemática
Fórmulas importantes da letra N do Kumon de Matemática
Termo Geral de uma Progressão Aritmética:
- an = a + (n - 1) . d
Soma de uma Progressão Aritmética:
-
Sejam Sn a soma dos termos de uma progressão aritmética cujo
1° termo é a, a razão é d, o último termo é
l e o número de termos é n.
Sn = 1/2 . n . (a + l) = 1/2 . n . [2a + (n - 1) . d]
Progressões Geométricas:
- A sequência dos termos calculados por meio da multiplicação sucessiva de um número fixo r pelo 1° termo a é chamada de progressão geométrica. O número r é chamado de razão da progressão geométrica.
Termo Geral de uma Progressão Geométrica
-
O termo geral de uma progressão geométrica {an} cujo 1° termo é a e a razão é r:
an = a . r n-1
Soma de uma Progressão Geométrica
-
Seja Sn a soma de uma progressão geométrica cujo 1° termo é
a, a razão é r e o número de termos é
n.
Quando r ≠ 1, Sn = a . (1 - r n) / (1 - r) = a . (r n - 1) / (r - 1)
Quando r = 1, Sn = na
Fórmula de Somatória I
Propriedades da Somatória
Relações de recorrência
A relação de recorrência
an+1 = p . an + q
pode ser reorganizada em:
an+1 - x = p . (an - x)
utilizando x que satisfaz
x = px + q. Se bn = an - x,
então a progressão {bn} é uma progressão geométrica.
an+1 = p . an + q
pode ser reorganizada em:
an+1 - x = p . (an - x)
utilizando x que satisfaz
x = px + q. Se bn = an - x,
então a progressão {bn} é uma progressão geométrica.
Portanto, o termo geral da progressão {an} pode ser determinado.
A relação de recorrência
an+2 + p . an+1 + q . an = 0
pode ser reorganizada em:
an+2 - α . an+1 = β . (an+1 - α . an)
utilizando as duas soluções α e β da equação quadrática x² + px + q = 0.
an+2 + p . an+1 + q . an = 0
pode ser reorganizada em:
an+2 - α . an+1 = β . (an+1 - α . an)
utilizando as duas soluções α e β da equação quadrática x² + px + q = 0.
A progressão {an+1 - α . an} é uma progressão geométrica.
Portanto, o termo geral da progressão {an} pode ser determinado.
Indução Matemática
Para provar que a proposição P é verdadeira para todos os números
naturais n por indução matemática, as seguintes afirmações devem
ser provadas.
(i) P é verdadeiro quando n = 1.
(ii) Se P é verdadeiro quando n = k, então P também
é verdadeiro quando n = k + 1.
Observação: uma afirmação que pode ser verdadeira ou falsa é chamada de
proposição.
Progressões Infinitas
Uma progressão de infinitos termos a1, a2,
a3, ..., an, ... é chamada de progressão infinita e
é expressa por {an}.
Dada a progressão {an}, se an se aproxima de um
valor constante α conforme n se aproxima do infinito,
então dizemos que {an} converge para α, o
qual é expresso da seguinte maneira:
limn→∞ an = α
ou
an → α quando n → ∞.
O valor de α é chamado de
valor do limite de {an}. Em
outras palavras, o limite de {an}
é α. Se o valor de todos os termos da progressão é a constante
c, então o valor do limite também é c e é expresso da seguinte
forma:
limn→∞ c = c
O símbolo ∞ é lido como "infinito" e representa uma
quantidade ilimitada que é maior do que qualquer número real.
--
Convergência e divergência nas progressões infinitas
Quando a progressão {an} não converge, dizemos que, {an}
diverge. Quando {an}
diverge para infinito positivo, dizemos que o limite de {an} é infinito positivo e é
expresso da seguinte maneira:
limn→∞ an = ∞
ou
an →
∞ quando n → ∞.
Quando {an}
diverge para infinito negativo, dizemos que
o limite de {an} é infinito negativo e é expresso da seguinte
maneira:
limn→∞ an = -∞
ou
an → -∞ quando n → ∞.
Quando uma progressão divergente não diverge nem para infinito positivo nem
para negativo, dizemos que a progressão é
oscilante.
Limite de uma Progressão
-
Converge
- limn→∞ an = α (converge para um valor constante α)
- Diverge
- limn→∞ an = ∞ (diverge para infinito positivo)
- limn→∞ an = -∞ (diverge para infinito negativo)
- Oscilante (sem limite)
Propriedades dos Limites de Progressões
Quando as progressões {an} e {bn}
convergem, no qual limn→∞ an = α e limn→∞ bn = β,
- limn→∞ k.an = k . α, onde k é a constante
- limn→∞ (an + bn) = α + β
- limn→∞ (an - bn) = α - β
- limn→∞ (an . bn) = α . β
- limn→∞ (an / bn) = α / β
Revisão de logaritmos (propriedades)
Limites de progressões e suas relações
-
Para todos os valores de n, quando an ≤ bn,
se limn→∞ an = α e limn→∞ bn = β, então α ≤ β
se limn→∞ an = ∞, então limn→∞ bn = ∞ -
Para todos os valores de n, quando an ≤ cn ≤ bn,
se limn→∞ an = limn→∞ bn = α, então limn→∞ cn = α
A afirmação 1 também é verdadeira quando an < bn.
E a afirmação 2 também é verdadeira quando:
an ≤ cn < bn
E a afirmação 2 também é verdadeira quando:
an ≤ cn < bn
an < cn ≤ bn
an < cn < bn
Sequências Infinitas
A progressão a, a.r, a.r 2, ..., a.r n-1, ... é chamada de
progressão geométrica infinita cujo 1º
termo é a e a razão é r.
Limite de uma progressão geométrica infinita {r n}
Quando r > 1, limn→∞ r n = ∞ ... Diverge
Quando r = 1, limn→∞ r n = 1 ... Converge
Quando |r| < 1, limn→∞ r n = 0 ... Converge
Quando r ≤ 1, Oscilante (sem limite) ... Diverge
Séries Geométricas Infinitas
Dada uma progressão infinita {an}, a expressão a1 + a2 + a3 + ... + an + ... ''' (1) é chamada de
série infinita, na qual a1 e an são chamados de
1º termo e o n-ésimo termo, respectivamente.
Além disso, dada uma progressão infinita {an}, considere Sn a soma dos primeiros n termos.
Quando a progressão infinita {Sn} converge, dizemos que a série infinita (1) também converge.
Quando a progressão infinita {Sn} diverge, dizemos que a série infinita (1) também diverge.
Do mesmo modo, a + a.r + a.r 2 + ...
+ a.r n-1 + ... que é a série infinita
derivada da progressão geométrica infinita cujo 1º termo é a e a
razão é r é chamada de série
geométrica infinita cujo 1º termo é a e a razão é
r.
Convergência e Divergência de uma série geométrica infinita
Dada uma série geométrica infinita a + a.r + a.r 2 + ... + a.r n-1 +
..., o seguinte é verdadeiro.
Quando a ≠ 0,
se |r| < 1, então a série converge e a soma é a / (1 - r);
se |r| ≥ 1, então a série diverge.
Quando a = 0, a série converge e a soma é 0.
Dízima periódica
Um decimal que contém um dígito ou bloco de dígitos que se repete
infinitamente em sua parte decimal é chamado de dízima periódica. A dízima periódica é expressa colocando-se uma barra que vai do primeiro ao
último dígito que se repete:
0,33333... = 0,3,
0,454545... = 0,45,
0,123123123... = 0,123,
Além disso, a dízima periódica pode ser expressa por uma fração utilizando um
série geométrica infinita.
Teorema do ponto médio
Se M e N são os pontos médios dos lados AB e AC do ΔABC, as seguintes
relações são verdadeiras:
MN e BC são paralelos
MN = 1/2 * BC
Isso é chamado de Teorema do ponto médio.
Séries Infinitas
Dada a série infinita a1 + a2 + a3 + ... + an + ... ''' (1), a soma dos primeiros n termos
Sn = a1 + a2 + a3 + ... + an
é chamada de soma parcial dos
primeiros n termos da série infinita.
A série infinita (1) pode ser escrita como:
Propriedades das Séries Infinitas
Quando as séries infinitas
e
Séries Infinitas
Quando n ≥ 2, an = Sn - Sn-1
limn→∞ an = limn→∞ (Sn - Sn-1) = limn→∞ Sn - limn→∞ Sn-1 = S - S = 0.
Considerando o exposto acima, a seguinte afirmação é verdadeira.
Convergência e Divergência de Séries Infinitas
Limites de Funções I
(referência L41)
Dada a função f(x), se f(x) se aproxima do valor constante
α conforme x se aproxima de a, então dizemos
que f(x) converge para α,
o que é expresso como:
limx→a f(x) = α ou f(x) → α quando x → α.
limx→a f(x) = α ou f(x) → α quando x → α.
O valor de α é chamado de
limite ou de
valor limite da função f(x) conforme x → α. Assim como com limites de progressões,
as seguintes expressões são verdadeiras para limites de funções.
Propriedades de Limites de Funções
Se limx→a f(x) = α e
limx→a g(x) = β, então
limx→a k . f(x) = k . α (k é uma constante)
limx→a [f(x) + g(x)] = α + β, limx→a [f(x) - g(x)] = α - β
limx→a [f(x) . g(x)] = α . β
limx→a [f(x) / g(x)] = α / β, (β ≠ 0)
Para a função f(x), o limite quando x se aproxima de
a pela direita é chamado de
limite tendendo para a direita e é expresso como limx→a+ f(x). O limite quando x se aproxima de
a pela esquerda é chamado de limite
tendendo para a esquerda e é expresso como
limx→a- f(x).
Existência de um Limite
Se limx→a+ f(x) = limx→a- f(x) = α, então limx→a f(x) = α.
Se limx→a+ f(x) ≠ limx→a- f(x) = α, então limx→a f(x)
não existe.
[x]
O símbolo [x] denota o maior número inteiro menor ou igual ao número
real x. Isso pode ser expresso da seguinte maneira:
Se n for um número inteiro e n ≤ x < n + 1,
então [x] = n.
Por exemplo:
[7/2] = 3, [2] = 2, [0,99] = 0, [-1/10] = -1
O símbolo [ ] é chamado de
símbolo de Gauss e [x] é lido
como "Gauss x".
Resumo
Dadas as funções f(x), g(x) e a constante α,
quando limx→a [f(x)/g(x)] = α e
também limx→a g(x) = 0,
limx→a f(x) = limx→a [f(x)/g(x) * g(x)] = α * 0 = 0.
Portanto, se limx→a [f(x)/g(x)] = α e
limx→a g(x) = 0, então limx→a f(x) = 0.
Limites de Funções II
Observação:
quando um limite se torna a forma indeterminada ∞/∞ ou ∞ - ∞, a expressão
precisa ser reorganizada.
Resumo:
quando x → -∞, é mais fácil determinar a resposta
considerando que x = -t e que o caso t → ∞ é
verdadeiro. (Caso contrário, (x²)1/2 = -x quando
x < 0, e determinar a resposta correta se torna mais difícil.)
Limites de funções trigonométricas
limx→0 [sen(x) / x] = 1
Limites de funções e suas relações
1 - Para todos os valores de x próximos a a, quando
f(x) ≤ g(x),
se limx→a f(x) = α e
limx→a g(x) = β,
então α ≤ β
se limx→a f(x) = ∞, então limx→a g(x) = ∞
2- Para todos os valores de x próximos a
a, quando f(x) ≤ h(x) ≤ g(x),
se limx→a f(x) = limx→a g(x) = α, então limx→a h(x) = α
A declaração 1 é verdadeira quando f(x) < g(x), e a declaração 2 é
verdadeira quando f(x) ≤ h(x) < g(x), f(x) < h(x) ≤ g(x), f(x) < h(x) < g(x).
Funções Contínuas e Descontínuas
Geralmente, a função f(x) é considerada
contínua quando x = a se
f(x) satisfizer as duas seguintes condições em relação a
a que é o valor de x dentro do domínio.
(i) limx→a f(x) existe
(ii) limx→a f(x) = f(a) é verdadeiro.
Com essas condições, o gráfico de y = f(x) não tem descontinuidade em
x = a. Se a função f(x) não é contínua em
x=a, f(x) é considerada
descontínua em x = a.
Funções contínuas e descontínuas
Dado que a função f(x) é contínua no intervalo fechado [a, b], então o
gráfico não tem descontinuidade entre os pontos (a, f(a)) e (b, f(b)).
Se f(a) e f(b) tiverem sinais diferentes, então o gráfico
intercepta o eixo x entre a e b.
Como as coordenadas x desses pontos são soluções para a equação
f(x) = 0, as seguintes afirmações são verdadeiras.
Teorema do Valor Intermediário
Se a função f(x) é contínua no intervalo fechado [a, b] e
f(a) . f(b) < 0, então a equação f(x) = 0 tem pelo
menos uma solução real no intervalo a < x < b.
O intervalo a ≤ x ≤ b é chamado de intervalo
fechado e o intervalo a < x < b é chamado de intervalo aberto.
Eles são expressos como [a, b] e (a, b), respectivamente.
O Teorema do Valor Intermediário pode ser explicado da seguinte maneira: se a
função f(x) é contínua no intervalo fechado [a, b] e
f(a) ≠ f(b), então há pelo menos um valor de c que
satisfaz f(c) = k e a < c < b para qualquer valor
arbitrário de k que estiver entre f(a) e f(b).
Diferenciação I
Dada a função f(x), se o valor de limite
limh→0 [f(a + h) - f(a)] /
h existe, então ele é chamado de
derivada de f(x) em
x = a e é expresso como f ' (a).
Nesse caso, dizemos que f(x) é diferenciável em
x = a.
Seja a + h = x. Então, h =
x - a. Como h→0, x→a. Portanto,
f ' (a) também pode ser expressa como
f ' (a) = limh→0 [f(a + h) - f(a)] / h = limx→a [f(x) - f(a)] / (x - a)
--
Se a função f(x) é diferenciável para cada valor
a em um certo intervalo, a função que corresponde à derivada
f ' (a) nesse intervalo é chamada de derivada de f(x) e é expressa como f ' (x). O processo de determinar a derivada f ' (x) é chamado de
diferenciação da
função f (x).
A derivada da função y = f(x) também é expressa por
símbolos como y', [f (x)]', dy/dx e
d/dx . f(x). dy/dx também é lida
como "dy, dx".
Propriedades de Derivadas
Quando k é uma constante e n é um número inteiro positivo,
se y = x n, então y' = n . x n-1
se y = k . f (x), então y' = k . f '(x)
se y = f (x) + g(x),
então y' = f '(x) + g '(x)
se y = f (x)
- g(x), então y' = f '(x) - g '(x)
Regra do Produto
[f (x) . g(x)]' = f
'(x) . g(x) + f (x)
. g '(x)
Regra do Quociente
[f (x) / g(x)]' = [f
'(x) . g(x) - f (x)
. g '(x)] / [g(x)]²
[1 / g(x)]' = - [g '(x)] /
[g(x)]²
Derivada de x n
Quando n é um número inteiro, (x n)' = n . x n-1
Diferenciação I
Seja y = f(x) . g(x)
. h(x)
y' = f '(x) . g(x) . h(x)
+ f(x) . g '(x)
. h(x) + f(x) . g(x)
. h '(x)
Diferenciação II
Dadas duas funções f (x) e g (x) onde o
intervalo de f (x) está dentro do domínio
de g (x), considere u = f (x) e
y = g (u). Então, y = f (x)
= g (f (x)) pode ser obtida.
A função g (f (x)) é chamada de
função composta de f (x) e g (x).
Regra da Cadeia I
dy/dx = du/du . du/dx
Regra da Cadeia II
[f (g (x))] ' = f ' (g(x)) . g '(x)
Diferenciação II
Quando o valor de y para y = f (x) é
determinado e então apenas um valor correspondente de x é definido,
x é considerado uma função de y. Se essa função é
expressa como x = g (y), então a função y =
g(x) onde x e y são invertidos é chamada
função inversa da função original
y = f (x).
Fórmula de Diferenciação para Funções Inversas
dy / dx = 1 / (dx / dy)
com dx / dy ≠ 0
Derivada de x p
Quando p é um número racional, (x p ) ' = p . x p - 1
Observação: números que podem ser expressos por uma fração, como m / n,
são chamados de números racionais.
Diferenciação de Funções Trigonométricas
As fórmulas de transformação de Soma/Diferença em Produto são frequentemente
utilizadas para diferenciação e integração de funções trigonométricas.
sen A + sen B = 2 . sen [(A + B) / 2] . cos [(A - B) / 2]
sen A - sen B = 2 . cos [(A + B) / 2] . sen [(A - B) / 2]
cos A + cos B = 2 . cos [(A + B) / 2] . cos [(A - B) / 2]
cos A - cos B = - 2 . sen [(A + B) / 2] . sen [(A - B) / 2]
Derivadas de Funções Trigonométricas
(sen x) ' = cos x
(cos x) ' = -sen x
(tg x) ' = 1 / cos2 x
Diferenciação de Funções Logarítmicas e Exponenciais
Quando examinamos o valor de (1 + k)1/k substituindo k com um valor próximo de 0, ele se aproxima
de um valor constante como mostrado abaixo. A constante e é um número
irracional, e = 2,7182818...
k = 0,1; (1 + k)1/k = 2,59374...
k = 0,01; (1 + k)1/k = 2,70481...
k = 0,001; (1 + k)1/k = 2,71692...
k = 0,0001; (1 + k)1/k = 2,71814...
k = 0,00001; (1 + k)1/k = 2,71826...
k = -0,1; (1 + k)1/k = 2,86797...
k = -0,01; (1 + k)1/k = 2,73199...
k = -0,001; (1 + k)1/k = 2,71964...
k = -0,0001; (1 + k)1/k = 2,71841...
k = -0,00001; (1 + k)1/k = 2,71829...
Derivadas de funções logarítmicas I
(ln x) ' = 1 / x
(loga x) ' = 1 / (x . ln a)
Derivadas de funções logarítmicas II
(ln |x|) ' = 1 / x
(loga |x|) ' = 1 / (x . ln a)
[f (g (x)] ' = f '(g(x)) . g '(x)
[f (g (x)] ' = g '(x) / g(x)
Derivada de xa
Quando α é um número real, (xα) ' = α . xα - 1
Derivada de funções exponenciais
(ex) ' = ex
(ax) ' = ax. ln a
Derivada de funções diversas e derivadas de ordem superior
dy / dx = dy / dt . dt / dx = dy / dt . 1 / (dx / dt)
Derivadas de funções representadas por um parâmetro
Quando x = f (t) e y = g (t), dy / dx = (dy / dt) / (dx / dt) = g ' (t) / f ' (t)
Diferenciação de funções diversas e derivadas de ordem superior
A função [f ' (x)] ' que é derivada por meio da diferenciação da derivada f ' (x) de y = f (x) é chamada de derivada de segunda ordem de f (x), e é expressa como y '' ou f '' (x). Além disso, a derivada da derivada de segunda ordem f '' (x) é chamada de derivada de terceira ordem de f (x) e é expressa como y ''' ou f ''' (x).
f ' (x) é frequentemente chamada de derivada de primeira ordem de f (x). Em geral, a função determinada ao se diferenciar n vezes a função y = f (x) é chamada de derivada de n-ésima ordem de f (x) e é expressa como y(n) ou f (n) (x). As derivadas de segunda ordem em diante são chamadas de derivadas de ordem superior.
As derivadas de segunda, terceira e n-ésima ordem são expressas como
d 2y / d x2, d 3y / d x3, d ny / d xn ou
(d 2 / d x2) f (x), (d 3 / d x3) f (x), (d n / d xn) f (x), respectivamente.
d 2y / d x2 é lido como "d dois y sobre dx ao quadrado".
Propriedades diversas de derivadas
Se a função f (x) é diferenciável em x = a, então f ' (a) existe e limx→a [f(x) - f(a)] = limx→a {[f(x) - f(a)] / (x - a) . (x - a)} = f ' (a) . 0 = 0
Portante, limx→a f (x) = f (a)
f (x) é contínua em x = a.
Diferenciabilidade e continuidade
Se a função f(x) é diferenciável em x = a, então ela é contínua em x = a.
Propriedades Diversas de Derivadas
Teorema de Rolle
Se a função f (x) é contínua no intervalo fechado [a, b], diferenciável no intervalo aberto (a, b) e f (a) = f (b), então existe pelo menos um valor c tal que f ' (c) = 0 e a < c < b.
O Teorema de Rolle afirma que, se f (a) = f (b), então existe pelo menos um ponto entre A e B na curva cujo gradiente da tangente é 0, isto é, f ' (c) = 0.
Teorema do valor médio
Se a função f (x) é contínua no intervalo fechado [a, b] e diferenciável no intervalo aberto (a, b), então existe pelo menos um valor de c tal que [f (b) - f (a)] / (b - a) = f ' (c) e a < c < b.
Assinar:
Postagens (Atom)