quarta-feira, 19 de junho de 2019

Ed Sheeran - Perfect (Amadeus violin cover instrumental)



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

André Rieu - Tales from the Vienna Woods



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Andre Rieu Ave Maria



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

André Rieu - Nearer, My God, to Thee (live in Amsterdam)



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Cálculo I - 19/06/2019

Cálculo I - 19/06/2019 (Quarta-feira)

Previsão de aula: 20h30min às 22h00min
Início da aula: 20h41min
Término da aula: 22h05min
Taxa de aproveitamento: 93,33%


Roteiro
1- Domínio, imagem, simetrias
2- Limite, continuidade e assíntotas
3- Derivadas e tangentes
4- Valores extremos, intervalos de crescimento e decrescimento, concavidade e pontos de inflexão.

Agora vamos agrupar todas as informações para esboçar gráficos.


Exemplo I

Esboce o gráfico de f(x) = 2x² / (x²-1)

Passo 1) Domínio
x pertence aos reais tal que x é diferente de 1 e de -1.


Passo 2) Interceptos
x e y

Para x = 0:
f(x) = 2x² / (x²-1)
f(0) = 2(0)² / (0²-1) = 0 / (-1)
f(0) = 0

Para y = 0:
f(x) = 2x² / (x²-1)
0 = 2x² / (x²-1)
2x² = 0 . (x²-1)
2x² = 0
x = 0

Logo, a função passa pelo ponto (0, 0).


Passo 3) Simetria

Testando a função

f(x) = 2x² / (x²-1)

Para x = -2
f(-2) = 2 . (-2)² / ((-2)²-1)
f(-2) = 2 . 4 / (4 - 1)
f(-2) = 8 / 3

Para x = 2
f(2) = 2 . (2)² / ((2)²-1)
f(2) = 2 . 4 / (3)
f(-2) = 8 / 3

Assim, a função é par, indicando a simetria da curva em relação ao eixo y.

Passo 4) Assíntotas
Horizontal e Vertical

Assíntota Horizontal (limite da função quando x tende a +∞ ou -∞):
limx→+∞ f(x)
= limx→+∞ [2x² / (x²-1)]
Utilizando o Teorema de L'Hopital
= limx→+∞ [4x / (2x-0)]
= limx→+∞ [4x / (2x)]
= limx→+∞ [4 / 2]
= limx→+∞ 2

Também pode ser feito assim:
= limx→+∞ [2x² / (x²-1)]
= limx→+∞ [2x² / [x² . (1 - 1/x²)]
= limx→+∞ [2 / (1 - 1/x²)]
= 2 / (1 - 0)
= 2 / 1
= 2

Como trata-se de uma constante (2), os limites para +∞ e para -∞ serão iguais à própria constante (2). Assim, a função tem apenas uma assíntota horizontal, y = 2.


Assíntota Vertical (limite da função quando x tende a 1+ ou 1- e quando x tende a -1+ ou -1-):

Limite com x tendendo a +1:

Limite pela direita de +1:
limx→1+ f(x)
= limx→1+ [2x² / (x²-1)]
= limx→1+ (2x²) / limx→1+ (x²-1)
= +∞

Limite pela esquerda de +1:limx→1- f(x)
= limx→1- [2x² / (x²-1)]
= limx→1- (2x²) / limx→1- (x²-1)
= -∞

Assim, existe uma assíntota vertical em x = 1.

Limite com x tendendo a -1:

Limite pela direita de -1
limx→-1+ f(x)
= limx→-1+ [2x² / (x²-1)]
= limx→-1+ (2x²) / limx→-1+ (x²-1)
= limx→-1+ (2x²) / [limx→-1+ x² - limx→-1+ 1]
= limx→-1+ (2x²) / [limx→-1+ x² - 1]
= -∞
Limite pela esquerda de -1:
limx→-1- f(x)
= limx→-1- [2x² / (x²-1)]
= limx→-1- (2x²) / limx→-1- (x²-1)
= limx→-1- (2x²) / [limx→-1- x² - limx→-1- 1]
= limx→-1- (2x²) / [limx→-1- x² - 1]
= +∞

Assim, existe uma assíntota vertical em x = -1.


Passo 5) Crescimento e Decrescimento

Derivada primeira da função:
f(x) = 2x² / (x² - 1)
Utilizando a regra do quociente:
y = u / v ⇒ y' = (u' . v - v' . u) / v²
Assim
f '(x) = [4x . (x² - 1) - (2x - 0) . 2x²] / (x4 - 2x² + 1)
f '(x) = [4x . (x² - 1) - (2x) . 2x²] / (x4 - 2x² + 1)
f '(x) = [4x³ - 4x - 4x³] / (x4 - 2x² + 1)
f '(x) = [- 4x] / (x4 - 2x² + 1)
f '(x) = - 4x / (x4 - 2x² + 1)
f '(x) = - 4x / (x² - 1)²

Igualando a derivada primeira a 0:
f '(x) = - 4x / (x² - 1)² = 0
- 4x / (x² - 1)² = 0
- 4x = 0
x = 0


Passo 6) Valores de máximo e mínimos locais
Analisar os pontos especiais encontrados em relação à função original.

f(0) = 0
x = -1
x = 1


Análise do crescimento
no intervalo
]-∞, -1[ ]-1, 0[ ]0, 1[ ]1, ∞[
x -2 -1/2 1/2 2
f '(x) 8/9 32/9 -32/9 -8/9
Sinal de f '(x) + + - -
Conclusão

Cálculos para o preenchimento da tabela de análise do crescimento:

f(x) = 2x² / (x² - 1)
f '(x) = - 4x / (x² - 1)²

Para x = -2:
f '(x) = - 4x / (x² - 1)²
f '(-2) = - 4 . (-2) / ((-2)² - 1)²
f '(-2) = 8 / (4 - 1)²
f '(-2) = 8 / (3)²
f '(-2) = 8 / 9

Para x = -1/2:
f '(x) = - 4x / (x² - 1)²
f '(-1/2) = - 4 . (-1/2) / ((-1/2)² - 1)²
f '(-1/2) = 4 . 1/2 / (1/4 - 1)²
f '(-1/2) = 4/2 / (1/4 - 1)²
f '(-1/2) = 2 / (-3/4)²
f '(-1/2) = 2 / (9/16)
f '(-1/2) = 2 . 16/9
f '(-1/2) = 32/9

Para x = 1/2:
f '(x) = - 4x / (x² - 1)²
f '(1/2) = - 4 . (1/2) / ((1/2)² - 1)²
f '(1/2) = - 4/2 / (1/4 - 1)²
f '(1/2) = - 2 / (-3/4)²
f '(1/2) = - 2 / (9/16)
f '(1/2) = - 2 . 16/9
f '(1/2) = - 32/9


Para x = 2:
f '(x) = - 4x / (x² - 1)²
f '(2) = - 4 . (2) / ((2)² - 1)²
f '(2) = - 8 / (4 - 1)²
f '(2) = - 8 / (3)²
f '(2) = - 8 / 9


Passo 7) Concavidade e pontos de inflexão:

Análise da concavidade
no intervalo
]-∞, -1[ ]-1, 1[ ]1,0[
f ''(x) 52/9 -4 52/27
Sinal de f ''(x) + - +
Concavidade


Cálculos para o preenchimento da tabela de análise da concavidade:

f(x) = 2x² / (x² - 1)
f '(x) = - 4x / (x² - 1)²

Para encontrar a derivada segunda:
f '(x) = - 4x / (x² - 1)²
Utilizando a regra do quociente:
y = u / v ⇒ y' = (u' . v - v' . u) / v²
f ''(x) = [(- 4) . (x² - 1)² - 2 . (x² - 1) . (2x - 0) . (-4x)] / [(x² - 1)²]²
f ''(x) = [(- 4) . (x² - 1)² - 2 . (x² - 1) . (2x) . (-4x)] / (x² - 1)
f ''(x) = [(- 4) . (x² - 1)² + 16x² . (x² - 1)] / (x² - 1)4
f ''(x) = {(x² - 1) . [-4 . (x² - 1) + 16x²]} / (x² - 1)4
f ''(x) = {(x² - 1) . [-4x² + 4 + 16x²]} / (x² - 1)4
f ''(x) = {(x² - 1) . [4 + 12x²]} / (x² - 1)4
f ''(x) = (x² - 1) . (4 + 12x²) / (x² - 1)4
f ''(x) = (4 + 12x²) / (x² - 1)3


Igualando f ''(x) a 0:
f ''(x) = (4 + 12x²) / (x² - 1)3 = 0
(4 + 12x²) / (x² - 1)3 = 0
(4 + 12x²) = 0 . (x² - 1)3
(4 + 12x²) = 0
4 + 12x² = 0
12x² = -4
x² = -4 / 12
x² = -1 / 3
Assim, não existe solução no conjunto dos números reais.
Solucionando com o conjunto dos números complexos (apenas para demonstração):
x² = -1 / 3
x = ± √(-1 / 3)
Fazendo i² = -1:
x = ± √[i² . (1/3)]
x = ± i . √(1/3)

Como não foi possível encontrar um valor que solucione a equação f ''(x) = 0, não existe inflexão na curva. Mesmo assim, vamos analisar pontos de amostra entre x = -∞ e x = -1 (onde existe uma assíntota), entre x = -1 e x = 1 (na região entre as duas assíntotas), e entre x = 1 e x = +∞.

f ''(x) = (4 + 12x²) / (x² - 1)3

Para x = -2:
f ''(x) = (4 + 12x²) / (x² - 1)3
f ''(-2) = [4 + 12 . (-2)²] / [(-2)² - 1]3
f ''(-2) = [4 + 12 . 4] / [4 - 1]3
f ''(-2) = [4 + 48] / [3]3
f ''(-2) = 52 / 9


Para x = 0:
f ''(x) = (4 + 12x²) / (x² - 1)3
f ''(0) = [4 + 12 . (0)²] / [(0)² - 1]3
f ''(0) = [4 + 0] / [0 - 1]3
f ''(0) = 4 / [- 1]
f ''(0) = 4 / (- 1)
f ''(0) = - 4

Para x = +2:
f ''(x) = (4 + 12x²) / (x² - 1)3
f ''(2) = [4 + 12 . (2)²] / [(2)² - 1]3
f ''(2) = [4 + 12 . 4] / [4 - 1]3
f ''(2) = [4 + 48] / [3]3
f ''(2) = 52 / 27

Verifica-se com base nos resultados, que a função apresenta 2 trechos com concavidade para cima e um para baixo. Porém, devido às assíntotas, existe uma ruptura no gráfico, descontinuando a função. Assim, realmente não há pontos de inflexão, ou seja, de mudança de concavidade (contínua) na curva. A concavidade muda na função, porém a função é descontínua no ponto em que ocorre a mudança de concavidade.


Passo 8) Esboço da curva

Como conhecemos as assíntotas, as direções de crescimento e decrescimento e as concavidades, podemos desenhar o gráfico da função f(x) = 2x² / (x² - 1).

Assíntotas
Assíntotas verticais: x = -1 e x = +1
Assíntota horizontal: y = 2

Análise de crescimento função f(x) = 2x² / (x² - 1):
Análise do crescimento
no intervalo
]-∞, -1[ ]-1, 0[ ]0, 1[ ]1, ∞[
x -2 -1/2 1/2 2
f '(x) 8/9 32/9 -32/9 -8/9
Sinal de f '(x) + + - -
Conclusão


Análise de concavidade da função f(x) = 2x² / (x² - 1):
Análise da concavidade
no intervalo
]-∞, -1[ ]-1, 1[ ]1,0[
f ''(x) 52/9 -4 52/27
Sinal de f ''(x) + - +
Concavidade

 Com todos os dados obtidos, é possível obter o gráfico da função f(x) = 2x² / (x² - 1).
Gráfico de f(x) = 2x² / (x² - 1), obtido com o GeoGebra e com o Krita.



Exemplo II

Esboce o gráfico de y = x4 + 4x³.

[Resolução minha, baseada no estilo do Kumon de Matemática]

Encontrar os pontos críticos:

y = x4 + 4x³

Seja f(x) = x4 + 4x³.
f '(x) = 4x³ + 12x²

Fazendo f '(x) = 0:
4x³ + 12x² = 0
4x² . (x + 3) = 0

Assim, x = -3, 0.

Análise de crescimento ou decrescimento da função (com base na derivada primeira da função):

f(x) = x4 + 4x³
f(-3) = (-3)4 + 4 . (-3)³ = 81 + 4 . (-27) = 81 - 108 = -27
f(0) = (0)4 + 4 . (0)³= 0 + 0 = 0

Tabela indicando o crescimento e o decrescimento da função:
x ... -3 ... 0 ...
f '(x) - 0 + 0 +
f(x) -27 0


Análise de concavidade da função (com base na derivada segunda da função):

f(x) = x4 + 4x³
f '(x) = 4x³ + 12x²
f ''(x) = 12x² + 24x

Fazendo f ''(x) = 0:
12x² + 24x = 0
12x . (x + 2) = 0

Assim, x = -2, 0.

f(x) = x4 + 4x³
f(-2) = (-2)4 + 4 . (-2)³ = 16 + 4 . (-8) = 16 - 32 = -16
f(0) = (0)4 + 4 . (0)³= 0 + 0 = 0

x ... -2 ... 0 ...
f ''(x) + 0 - 0 +
f(x) -16 0

Agora, conhecendo os intervalos onde a função cresce e decresce, e onde ela apresenta concavidade para cima e para baixo, pode-se obter o gráfico da função.

Gráfico de f(x) = x4 + 4x, obtido com o GeoGebra e com o Krita.


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

terça-feira, 18 de junho de 2019

Näher, mein Gott, zu Dir - Nearer, My God, to Thee



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

J. S. Bach - "Jesus bleibet meine Freude" BWV 147



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Patricia JANEČKOVÁ: "Frühlingsstimmen" (Johann Strauss II)



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Antonio Vivaldi - "Summer" from four seasons



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Festmesse Kirchenchöre St.Joseph St.Albertus Magnus Leverkus



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

DIE HIMMEL ERZÄHLEN DIE EHRE GOTTES von Joseph Haydn



Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Curso Growatt - Aula 04 - Conexão CC