quinta-feira, 8 de abril de 2021

Álgebra Linear: Programa detalhado da Disciplina

Álgebra Linear: Programa detalhado da Disciplina

Unidade I - Reta
1. Equação vetorial da reta
2. Equações paramétricas da reta
3. Equações simétricas da reta
4. Equações reduzidas da reta
5. Ângulo entre duas retas
6. Retas ortogonais
7. Reta ortogonal a duas retas
8. Interseção de duas retas
9. Exercícios sobre retas

Unidade II – Plano
1. Equação geral do plano
2. Equação vetorial e equações paramétricas do plano
3. Casos particulares da equação geral do plano
4. Ângulo entre dois planos e ângulo entre reta e plano
5. Paralelismo e perpendicularismo entre reta e plano
6. Reta contida em um plano
7. Interseção de dois planos
8. Interseção de reta com plano

Unidade III - Espaços Vetoriais
1. Definição de Espaço Vetorial Real
2. Subespaços Vetoriais
3. Combinação Linear de Vetores
4. Dependência e Independência Linear
5. Base e Dimensão de Um Espaço Vetorial
6. Mudança de Base

Unidade IV – Transformações Lineares
1. Definição de Transformações Lineares Arbitrárias
2. Matrizes de Transformações Lineares
3. Transformações Lineares no Plano e Espaço
4. Operadores lineares

Unidade V – Autovalores e Autovetores
1. Autovalores e Autovetores de um Operador Linear
2. Determinação dos Autovetores e Autovalores
3. Diagonalização de Operadores


REFERÊNCIAS BIBLIOGRÁFICAS

Básica
1. WINTERLE, P. Vetores e Geometria Analítica. Makron Books. São Paulo.2000.
2. BOLDRINI, J. L.; COSTA, S. I. R.; FIGUEIREDO, V. L.; WETZLER, H. G. Álgebra Linear. São Paulo: Ed. Harbra. 3ªed, 1986.
3. STEINBRUCH, Alfredo; WINTERLE, Paulo. Introdução à Álgebra Linear. São Paulo: Ed. Makron Books, 1990.
4. LAY, David C. Álgebra Linear e suas aplicações. Rio de Janeiro: Ed. LTC, 1999.

Complementar
5.BOULOS, Paulo & Camargo, Ivan de. Geometria Analítica – um tratamento vetorial. Makron Books. São Paulo.
6. ANTON, Howard; RORRES, Chris. Álgebra Linear com aplicações. Porto Alegre: Ed. Bookman, 2001.
7. POOLE, David. Álgebra Linear. São Paulo: Ed.Thomson Pioneira. 1ªed, 2004.
8. KOLMAN, Bernard; HILL, David R. Introdução a Álgebra Linear com aplicações. Rio de Janeiro: Ed. LTC. 8ªed, 2006.
9. LIPSCHUTZ, S. Álgebra Linear. Coleção Schaum. São Paulo: Ed. McGraw-Hill. 3ªed, 1994.
10. LANG, Serge. Álgebra Linear. Coleção Clássicos da Matemática. Recife – PE, Editora Ciência Moderna. 1ªed, 2003


Agradeço sua leitura. Lembre-se de deixar seu comentário, caso seja necessário realizar alguma correção ou melhoria na postagem. Com dedicação, Lucas Tiago Rodrigues de Freitas, M.Sc.

Curso Growatt - Aula 04 - Conexão CC