quarta-feira, 28 de dezembro de 2011

Comportamento Humano

"The analysis assumes that individuals maximize welfare  as they conceive it, whether they be selfish, altruistic, loyal, spiteful, or masochistic. Their behavior is forward-looking, and it is also consistent over time. In particular, they try as best they can to anticipate the uncertain consequences of their actions. Forward-looking behavior, however, may still be rooted in the past, for the past can exert a long shadow on attitudes and values.  

Actions are constrained by income, time, imperfect memory and calculating capacities, and other limited resources, and also by the available opportunities in the economy and elsewhere. These opportunities are largely determined by the private and collective actions of other individuals and organizations."

"The economic analysis of crime incorporates into rational behavior illegal and other antisocial actions. The human capital approach considers how the productivity of people in market and non-market situations is changed by investments in education, skills, and knowledge. The economic approach to the family interprets marriage, divorce, fertility, and relations among family members through the lens of utility-maximizing forward-looking behavior."

"A novel theoretical development in recent years is the analysis of the consequences of stereotyped reasoning or statistical discrimination (see Phelps [1972], and Arrow [1973]). This analysis suggests that the  beliefs  of
employers, teachers, and other influential groups that minority members are less productive  can  be self-fulfilling, for these beliefs may cause minorities to underinvest in education, training, and work skills, such as punctuality. The underinvestment does make them less productive (see a good recent analysis by Loury [1992])"

Gary S. Becker - Nobel Prize
Accessed in: December, 12; 2012.

domingo, 25 de dezembro de 2011

Prêmios Nobel de Economia

Os ganhadores do Prêmio Nobel de economia podem ser vistos no site:
http://www.nobelprize.org/nobel_prizes/economics/laureates/

Dentre eles, destaco o trabalho de Gary S. Becker (http://www.nobelprize.org/nobel_prizes/economics/laureates/1992/becker-lecture.html), que ganhou o prêmio em 1992, com o assunto "THE ECONOMIC WAY OF LOOKING AT LIFE".

terça-feira, 20 de dezembro de 2011

Projeto de Pesquisa "ÁGUA DESTILADA: produção racional"


FUNDAÇÃO INSTITUTO CAPIXABA DE PESQUISAS EM CONTABILIDADE, ECONOMIA E FINANÇAS
  
METODOLOGIA DA PESQUISA I

PROFESSOR: MARCELO SANCHES PAGLIARUSSI

ALUNO: LUCAS TIAGO RODRIGUES DE FREITAS

PROJETO: ÁGUA DESTILADA: produção racional

INTRODUÇÃO
A água é utilizada em diversas atividades humanas: agricultura, indústria, recreação, por exemplo. Está disponível na natureza sob diversas formas: gelo, vapor, água de rios e lagos e água do mar. Sua distribuição também é desigual ao longo do planeta, existindo regiões com muita água e regiões secas e desérticas. O acesso fácil a água de qualidade e em quantidades suficientes, especialmente nas zonas rurais, pode significar até economia de tempo. Além disso, a regulação do uso da água pode afetar a lucratividade, principalmente onde há normas muito rigorosas. A água também é foco de estudos que visam à sua conservação, gestão e análise de qualidade (ARKU, 2010; RASSIER et al., 2010; GILL et al., 2010; EGAN et al., 2009; RAS et al., 2000; DARWISH et al., 2005).
Em algumas regiões, na África e na Ásia, como exemplo, o acesso a água potável é limitado, com impactos na irrigação de campos agrícolas. Há problemas políticos internacionais devido aos suprimentos de água. As formas de distribuição da água também são motivos de estudos e de regulamentações. O acesso a água no Alaska também foi estudado, de forma a relacionar a escassez de água à saúde e higiene da população (GUPTA et al., 2009; CROW, 2010; EICHELBERGER, 2010).
O reuso de água é uma forma de mitigar os impactos da escassez de água. Não é restrito apenas a áreas áridas, mas também serve a processos industriais, seja como forma de se reduzir custos de produção ou como forma de se atender legislações específicas. A água pode ser reutilizada, de acordo com sua qualidade e tratamento, para irrigação, manutenção paisagística, reuso e reciclagem industrial, recarga de aquíferos, usos ambientais e recreacionais, reserva para incêndio, descargas sanitárias, condicionamento de ar e reuso potável. Como exemplo de reuso industrial tem-se o reuso dos efluentes corantes de indústrias têxteis e dos efluentes de mineradoras. Mas o reuso deve ser realizado com cuidados específicos, para que não se polua o solo e nem os aquíferos subterrâneos, e de forma a se obter o melhor rendimento possível no uso da água (TAKASHI, 2006; ERGAS et al., 2006; ZOLLER, 2006; HARTL et al., 2006).
Em laboratórios de pesquisa a água também é um insumo básico, com usos em diluições, preparo de reagentes, limpeza de vidrarias, realização de experimentos em geral. A qualidade da água para uso laboratorial também é importante, pois não deve influenciar ou alterar resultados de análises. Existem processos de purificação específicos que permitem que a água alcance a qualidade necessária. Dentre os processos mais comuns estão a Destilação Pilsen, Deionização, Ultra-purificação e a Osmose Reversa. Os padrões de qualidade para água laboratorial mais comuns são os determinados por Clinical and Laboratory Standards Institute (CLSI), International Organization for Standardization (ISO), The American Society for Testing and Material (ASTM) e The Pharmacopeia including USP, EP and JP. A purificação acontece através da separação de possíveis contaminantes presentes na água. Existem também destiladores solares, com o intuito de propiciar economia energética (ELGA, 2008; BRADAN et al., 2004; EAMES et al., 2007; KABEEL et al., 2010; ANDRÉS et al., 1998; GARCÍA-RODRÍGUEZ et al., 1999; GUTÍERREZ et al. 2009; MAHESHWARI et al., 1995).
Dentre os diversos processos de purificação, tem-se a destilação Pilsen. Trata-se de um processo com desperdício de água. A água é separada no destilador Pilsen para a produção de vapor e para a condensação de vapor, sendo a água utilizada para condensação descartada e o vapor condensado coletado para uso laboratorial.
Em vista da escassez de água em diversas regiões, das regulamentações ambientais cada vez mais exigentes e da possibilidade de reuso, o presente trabalho propõe a análise do reuso da água descartada por destiladores Pilsen nos próprios destiladores, de modo a se economizar água, numa perspectiva de desenvolvimento sustentável. Além disso, pretende-se comparar economicamente os diversos processos de purificação de água disponíveis no mercado com a destilação Pilsen com o reuso proposto, com o objetivo de avaliar as possíveis vantagens que o reuso pode proporcionar.
A proposta de estudo pode ser analisada conforme o fluxograma na Figura 1.

FIGURA 1: Purificação de água em laboratório: influência do reuso na destilação Pilsen


REFERENCIAL TEÓRICO
A pureza da água é fator de fundamental importância para análises laboratoriais, e sua qualidade deve ser sempre adequada à atividade a que se destina: exames, preparo de reagentes e lavagem de vidraria, por exemplo. Existem diversos processos para se obter água purificada para laboratórios. Eles podem ser utilizados separadamente ou em conjunto, de modo a se atingir o grau de pureza necessário. No caso específico da destilação, há vários estudos sobre destilação solar, que propicia uma destilação com um baixo custo energético e de água. Porém a destilação solar possui algumas limitações: a necessidade de área exposta para coleta da energia solar e a redução da produção em dias nublados. Existe também a destilação Pìlsen, que apresenta diferentes limitações e vantagens em relação à destilação solar. Dentre as vantagens encontram-se uma produção constante, independente das condições climáticas, e o pequeno espaço ocupado pelo destilador. Porém ela apresenta um consumo energético intenso, além de descartar grande parte da água consumida, gasta no processo de condensação do vapor (ELGA, 2008; BRADAN et al., 2004; EAMES et al., 2007; KABEEL et al., 2010; ANDRÉS et al., 1998; GARCÍA-RODRÍGUEZ et al., 1999; GUTÍERREZ et al. 2009; AL-HINAI et al., 2002; EL-NASHAR, 2003; ABDALLAH et al., 2009).
Numa perspectiva de crescimento populacional e econômico, tem-se em conjunto uma tendência ao aumento do consumo de insumos. O aumento na produção agrícola e industrial tende a aumentar também a necessidade por água limpa. Também a legislação ambiental tende a se tornar mais rigorosa. Num enfoque para o desenvolvimento sustentável, vê-se a necessidade de se analisar a possibilidade de otimizar os processos produtivos em geral, de forma a se utilizar menos energia e matérias-primas e aumentar a produtividade, sempre que possível. Como forma de se contornar o descarte da água pela destilação Pilsen, várias propostas foram estudadas: utilização da água para irrigação de jardins, para limpeza de áreas e descargas sanitárias, e o reuso da água para o processo de destilação, por exemplo. Como a prática do reuso está em fase inicial de implantação e testes em muitas áreas, há muitas pendências ainda quanto a aspectos técnicos e práticos, o que torna essencial a pesquisa de novas tecnologias e o aprimoramento das já existentes. (LOY, 2009; LIVESEY et al., 2009; HALLOWES et al., 2008).



METODOLOGIA

O tratamento convencional de água consome produtos químicos, recursos energéticos e mão-de-obra especializada, com custos e impactos ambientais diretamente relacionados ao volume consumido. O grande desperdício de água percebido no processo de destilação apenas reforça a necessidade de racionalização de seu uso.
A partir do desenvolvimento de uma tecnologia capaz de reciclar a água de resfriamento diretamente no processo de destilação, soluciona-se o problema do desperdício de água. Porém, para se ter uma real dimensão de todos os benefícios que a nova tecnologia é capaz de proporcionar, faz-se necessário calcular a colaboração dela para o desenvolvimento econômico social.
O projeto trata-se de uma pesquisa-ação, com desenvolvimento a partir de um sistema experimental de reciclagem construído no Laboratório de Saneamento (LABSAN) da Universidade Federal do Espírito Santo (UFES), desenvolvido de forma a reciclar toda a água descartada por um destilador do tipo Pilsen, excetuando-se as perdas por evaporação, com monitoramento do volume consumido e do volume reciclado de água, através de hidrômetros. O sistema de destilação e a reciclagem da água se realizam de forma automatizada, através de equipamentos eletro-mecânicos acionados por circuitos elétricos.
Serão realizadas análises físico-químicas para acompanhamento da qualidade da água destilada produzida, de modo a verificar se o sistema de destilação Pilsen com reuso realmente atende às especificações de qualidade determinadas para água de uso laboratorial.
Pretende-se analisar os custos sociais e privados relacionados à construção e manutenção do sistema, de forma a verificar quais são o lucro privado e o lucro social obtidos na utilização da reciclagem da água de resfriamento para destilação.
Também se pretende comparar as vantagens e desvantagens da tecnologia proposta com outras tecnologias de purificação disponíveis no mercado, realizando-se uma análise de custo/benefício de cada uma das principais formas de purificação, determinando-se então a viabilidade econômica da tecnologia em análise.



REFERÊNCIAS
ABDALLAH,Salah; ABU-KHADER, Mazen M.; BADRAN, Omar. Effect of various absorbing materials on the thermal performance of solar stills. DESALINATION, v. 242, n. 1-3, p. 128-137, Jun. 2009.
AL-HINAI, H.; AL-NASSRI, M. S.; JUBRAN, B. A. Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Conversion & Management, v. 43, n. 13, p. 1639-1650, Set. 2002.
ANDRÉS, M. C. de; DORIA, J.; KHAYET, M.; PEÑA, L.; MENGUAL, J. I. Coupling of a membrane distillation module to a multieffect distiller for pure water production. DESALINATION, v. 115, n. 1, p. 71-81, Mar. 1998.
ARKU, Frank S. Time savings from easy access to clean water: Implications for rural men’s and women’s well-being. Progress in Development Studies, Ipswich, v. 10, n. 3, p. 233-246, Jul. 2010.
BRADAN, Ali A.; AL-HALLAQ, Ahmad A.; SALMAN, Imad A. Eyal; ODAT, Mohammad Z. A solar still augmented with a flat-plate collector. DESALINATION, v. 172, n. 3, p. 227-234, Fev. 2005.
CROW, Deserai A. Policy Punctuations in Colorado Water Law: The Breakdown of a Monopoly. Review of Policy Research, Oxford, v. 27, n. 2, p. 147-166, Mar. 2010.
DARWISH, M. A.; AL-NAJEM, NAJEM. The water problem in Kuwait. DESALINATION, v. 177, n. 1-3, p. 167-177, Jun. 2005.
EAMES, I. W.; MAIDMENT, G. G.; LALZAD, A. K. A theoretical and experimental investigation of a small-scale solar-powered barometric desalination system. Applied Thermal Engineering, v.27, n.11-12, p.1951-1959, Jan. 2007.
EGAN, Kevin J.; HERRIGES, Joseph; KLING, Catherine L.; DOWNING, John A. Valuing Water Quality as a Function of Water Quality Measures. American Journal of Agricultural Economics, Oxford, v. 91, n. 1, p. 106-123, Fev. 2009.
EICHELBERGER, Laura Palen. Living in Utility Scarcity: Energy and Water Insecurity in Northwest Alaska. American Journal of Public Health, Washington, v. 100, n. 6, p. 1010-1018, Jun. 2010.
EL-NASHAR, Ali M. Effect of dust deposition on the performance of a solar desalination plant operating in an arid desert area. Solar Energy, v. 75, n. 5, p. 421-431, Nov. 2003.
ELGA. PURE LABWATER GUIDE: An essential overview of lab water purification applications, monitoring and standards. High Wycombe: ELGA LabWater/VWS UK Ltd, 2005. Disponível em: < http://www.veoliawaterst.es/lib/vws-iberica/15196,Pure-Labwater-Guide.pdf >. Acesso em: 29 Ago. 2010.
ERGAS,Sarina J.; THERRIAULT, Brian M.; RECKHOW, Daid A. Evaluation of Water Reuse Technologies for the Textile Industry. Journal of Environmental Engineering, Reston, v. 132, n. 3, p. 315-323, Mar. 2006.
GARCÍA-RODRÍGUEZ, L.; GÓMEZ-CAMACHO, C. Design parameter selection for a distillation system coupled. DESALINATION, v. 122, n. 2-3, p. 195-204, Jul. 1999.
to a solar parabolic trough collector
GILL, Alison; WILLIAMS, Peter; THOMPSON, Shelagh. Perceived water conservation attitudes and behaviours in second-home island settings. Tourism & Hospitality Research, Basingstoke, v. 10, n. 2, p. 141-151, Abr. 2010.
GUPTA, Joyeeta; PIETER, van der Zaag. The Politics of Water Science: On Unresolved Water Problems and Biased Research Agendas. Global Environmental Politics, Cambridge Massachusetts, v. 9, n. 2, p. 14-23, Mai. 2009.
GUTÍERREZ, J.; PORTA-GÁNDARA, M. A.; FERNÁNDEZ, J. L. Distilled water production using geothermally heated seawater. DESALINATION, v. 249, n. 1, p. 41-48, Nov. 2009.
HALLOWES,Jason Scott; POTT, Andrew James; DÖCKEL, Max. Managing Water Scarcity to Encourage Sustainable Economic Growth and Social Development in South Africa. International Journal of Water Resources Development, Abingdon, v. 24, n. 3, p. 357-369, Set. 2008.
HARTL, Richard F.; KIRAKOSSIAN, Gagik T.; HAKOBYAN, Stanislav R.; MARKARYAN, Artyom, H. A Dynamical Model of Water Recycling in a Mine-Processing Enterprise. Central European Journal of Operations Research, Dordrecht, v. 14, n. 1, p. 45-57, Fev. 2006.
KABEEL, A. E.; HAMED, A. M.; EL-AGOUZ, S. A. Cost analysis of different solar still configurations. Energy, v. 35, n. 7, p. 2901-2908, Mai. 2010.
LIVESEY, Sharon M.; HARTMAN, Cathy L.; STAFFORD, Edwin R.; SHEARER, Molly. PERFORMING SUSTAINABLE DEVELOPMENT THROUGH ECO-COLLABORATION. Journal of Business Communication, Nacogdoches, v. 46, n. 4, p. 423-454, Out. 2009.
LOY, Patrick. China ’s Role in the Challenge for Global Sustainable Development. Perspectives on Global Development & Technology, Leiden, v.8, n. 2/3, p. 547-558, Jun. 2009.
MAHESHWARI, G. P.; AL-RAMADHAN, M.; AL- ABDULHADI, M. Energy requirement of water production in dual-purpose plants. DESALINATION, v. 101, n. 2, p. 133-140, Abr. 1995.
RAS, Eric T.; POMANTOC, John-John; TUMULAK, Enrico P.; RAS, Rocky T.; FALAR, Pinky R.; LELIS, Jocelyn. ETRAS Thermal Desalination System. DESALINATION, v. 132, n. 1-3, p. 353-356, Dez. 2000.
RASSIER, Dylan G.; DIETRICH, Earnhart. The Effect of Clean Water Regulation on Profitability: Testing the Porter Hypothesis. Land Economics, Madison, v. 86, n. 2, p. 329-344, Mai. 2010.
TAKASHI, Asano. Water Reuse via Groundwater Recharge. International Review for Environmental Strategies, Hayama, v. 6, n. 2, p. 205-216, Jun. 2006.
ZOLLER, U. Water Reuse/Recycling and Reclamation in Semiarid Zones: The Israeli Case of Salination and “Hard” Surfactants Pollution of Aquifers. Journal of Environmental Engineering, Reston, v. 132, n. 6, p. 683-688, Jun. 2006.

Recensão Conceitual do Texto: “Gerenciamento de pessoas: sobre a formação dos conceitos de trabalho em geral e em abstrato, de John Locke a Adam Smith”

FUCAPE - Gestão e Relação do Trabalho
Recensão Conceitual

Texto: “Gerenciamento de pessoas: sobre a formação dos conceitos  de trabalho em geral e em abstrato, de John Locke a Adam Smith”

Aluno: Lucas Tiago Rodrigues de Freitas

Definir atividades produtivas como um conceito pode parecer simples, porém é algo muito discutido, por ter impactos nas relações sociais de um modo geral e na distribuição da riqueza. O próprio conceito de riqueza pode depender da definição em questão. Pode-se estar parado, de folga, no ócio, no lazer ou pode-se estar numa construção, carregando materiais e ferramentas, e em ambas situações as ambições de cada indivíduo podem ser satisfeitas ou não. Além disso, é necessário pensar em como as atividades produtivas serão recompensadas pela sociedade em geral.
Trabalho, segundo o dicionário Globo, é: “Aplicação da atividade física ou intelectual; esforço; tarefa; serviço; obra feita ou que está em via de execução; fadiga; labutação; ação mecânica dos agentes naturais; luta; lida; (sociol.) a atividade humana aplicada à produção da riqueza; exercício; esmero; estudo ou escrito sobre algum assunto”.  Vem do latim tripaliu, que era um instrumento de tortura para os escravos, sendo o trabalhador a pessoa que torturava. Ou seja, a noção de trabalho, de algum modo, se relaciona a sofrimento e dor, algo torturante.
O conceito de trabalho se relaciona com o valor das coisas, seja um valor de uso ou um valor de troca. Aristóteles já distinguia valores nos usos das coisas. Platão já separava o trabalho segundo a diversidade natural das necessidades e a diversidade de habilidades das pessoas. Os gregos e os romanos separavam o trabalho em ato intencional gerador (poiesis no grego e opus no latim) ou transformador (ponos no grego e labor no latim). O lazer era o otium romano. Locke viu o trabalho como algo que modifica o valor das coisas que existem, de modo a se obter uma vida mais cômoda, e como algo que assegure a propriedade das coisas, possibilitando a sua troca por outros bens que sejam de interesse do proprietário. Para Locke o trabalho compreende o trabalho físico e o mental, o “trabalho em geral”, e se opõe ao lazer. Mas o conceito de trabalho da forma como conhecemos, de “força produtiva”, com um preço, só ficou claro e definido a partir de Adam Smith, há cerca de 230 anos. Smith pensava em uma regulação e “bem-estar” dos trabalhadores, segundo o aumento de sua produtividade, com um ponto de vista baseado no “interesse egoísta” das pessoas, de querer melhorias em sua condição de vida. Como exemplo pode-se citar a atividade do padeiro e do açougueiro, que, trabalhando por seus próprios interesses, expandindo e melhorando seu padrão de vida, melhoram o acesso das demais pessoas a alimentos, reduzindo custos.
Analisando-se o tema “melhoria da produtividade da destilação Pilsen, através da redução do consumo de água”, observa-se que, agindo segundo um “interesse egoísta” de se obter melhorias na produção, pode-se reduzir o custo do produto e alcançar um desenvolvimento sustentável, com menores impactos ambientais, o que pode resultar em melhorias na qualidade de vida para as pessoas em geral, resultando na ideia de “bem-estar” de Adam Smith.

segunda-feira, 19 de dezembro de 2011

Padronização para limpeza de destilador


Primeiros passos: assegurar-se de que é seguro mexer no aparelho
- desligar os disjuntores que fornecem energia ao aparelho
- desconectar os cabos que fornecem energia ao aparelho (será necessário usar uma chave Phillips pequena para desparafusar o conectar onde os 2 cabos que alimentam o destilador se ligam - nota: o conector deve estar próximo ou dentro da caixa plástica com os cabos na parede)

Após desconectado da energia elétrica: desconectar as mangueiras de alimentação de água. Memorizar como elas estão ligadas para poder colocá-las de volta após a limpeza. Deve ser necessário utilizar uma chave phillips para afrouxar as abraçadeiras que travam as mangueiras para que não vazem.

Procedimentos de limpeza
- Agora que o destilador já está livre da alimentação de energia e das mangueiras de água, pode-se proceder a limpeza.
- Cuidado para não quebrar nenhuma parte do destilador ao limpá-lo. Ao esfregar, tenha certeza de não forçar partes que possam se soltar.
-  Utilize uma bucha de malha de aço e detergente. Esfregue até soltar toda a crosta que aderiu nas paredes internas da "panela" do destilador, onde a água entra em ebulição.
- Após esfregar, enxague com água e um pouco de álcool. Elimine os resíduos de sabão. Cuidados com as peças que podem ser quebradas. Não deixe que caia água dentro do circuito elétrico de acionamento onde está o sensor de nível d'água do destilador. Se cair, assegure-se de secá-lo por completo, inclusive o circuito, antes de ligá-lo novamente.

Após a limpeza:
- Assegure-se de que o circuito elétrico do destilador está seco
- Reconecte as mangueiras de água
- Reconecte os cabos de energia
- Abra a alimentação de água do destilador
- Ligue os disjuntores
- Ligue o aparelho
- Descarte o primeiro litro de água destilada para evitar impurezas.

Testes para regressão

http://www.macrodados.com.br/ajuda/Econometria_Parte3.htm

sábado, 10 de dezembro de 2011

Programa gratuito para rodar regressões: GNU GRETL (Gnu Regression, Econometrics and Time-series Library)

Gretl: Gnu Regression, Econometrics and Time-series Library

Programa gratuito para rodar regressões: GNU GRETL

O programa trabalha com:
- dados de corte
- série temporal
- painel

Como inserir os dados no GRETL:

Os dados podem ser importados de outros programas, como de uma planilha do Excel, por exemplo. Para inserí-los, pode-se usar a seguinte lógica, conforme o tipo de análise:


  • Dados de Corte (também conhecida como Cross-section):
  • Série Temporal:
    • Organizar os dados em colunas (ano (data: dia, mês ou algo assim), informação 1, informação 2, informação 3, etc.) na tabela do Excel, por exemplo. Salvar a planilha.
    • Abrir o GRETL.
      • Acessar:
        • Arquivo >
        • Novo Conjunto de Dados >
        • Inserir o número de observações (cada período, como um ano, é uma observação. Exemplo: para uma série temporal com 25 anos, haverá 25 observações). >
        • Estrutura de Conjunto de Dados (escolher Série Temporal) >
        • Frequência da Série Temporal (escolher: Anual, Trimestral, Mensal, Semanal etc. - Diária: você pode escolher se a semana terá 5 dias úteis, 6 ou todos os 7) >
        • Observação Inicial (por exemplo, o ano de 1987) >
        • Confirmar estrutura do conjunto de dados (Num exemplo de 25 anos, começando em 1987, temos: "Anual, 1987 a 2011") (Pode-se marcar a opção "inicie a introdução de valores" para inserir os dados manualmente) >
        • O conjunto de dados está criado. Agora, para importar os dados de uma planilha do Excel (ou do seu programa de trabalho, como Open Document, Eviews ou Stata, por exemplo) acesse:
          • Arquivo >
          • Acrescentar dados >
          • Excel (ou outro programa no qual estejam os dados) >
          • Escolher a opção *.xlsl para arquivos do Excel com formato com essa extensão (a opção marcada por padrão é *.xls) >
          • Escolher o arquivo conforme a localização no computador e clicar no botão "Abrir" >
          • Aparece a caixa "gretl: importação de planilha" (se os seus dados estão com a coluna de data na coluna 1, pode-se marcar a importação da coluna 2 em diante; a linha pode permanecer marcada, para nomeação automática das variáveis - cuidado ao nomear as variáveis na planilha, pois elas devem ter um nome simples sem caracteres especiais, para evitar erro na hora da importação ) >
          • Aparece então uma caixa "gretl: Informação" dizendo se os seus dados foram acrescentados com sucesso ou se houve problema na importação. Se houver problema, cheque as informações na caixa de texto e solucione o problema para tentar uma nova importação. Se os dados foram acrescentados com sucesso, clique no botão "Fechar". Pronto. Agora os dados foram importados e você pode escolher na opção "
            Modelo" qual modelo de regressão irá realizar (por exemplo, "Mínimos Quadrados Ordinários").
  • Painel



Mais informações: http://gretl.sourceforge.net/win32/index_pt.html

Links Para Download do Software:



Alguns tutoriais disponíveis no youtube:

Artigos sobre o GRETL:

quinta-feira, 8 de dezembro de 2011

Como fazer uma Regressão Cross-section

Como fazer uma Regressão Cross-section

Sites que podem auxiliar a entender o que é e como fazer uma regressão cross-section:
http://www.fetp.edu.vn/longcourse/0102/analytical%20method/Handouts/05%20Est%201.pdf
http://www.bibl.ita.br/ixencita/artigos/Infra03.pdf
http://personal.strath.ac.uk/gary.koop/review_overheads.pdf

Fazer regressão no Excel

Alguns links que podem ajudar na compreensão de como fazer uma regressão no Excel:

http://antonio-fonseca.com/Unidades%20Curriculares/2-Ano/Riscos%20Naturais/6%20Apontamentos/Regress%E3o.pdf

http://www.bertolo.pro.br/Adminfin/AnalInvest/Regress%C3%A3o%20Usando%20Excel.pdf

Programa alternativo ao AUTOCAD: DoubleCad XT

Um programa alternativo ao AUTOCAD: DoubleCad XT.

O DoubleCad oferece uma versão gratuita de software para desenho (do tipo CAD - Computer-aided Design). Oferece compatibilidade com alguns formatos de arquivos salvos no AUTOCAD.

Site:
http://www.doublecad.com/

GNU Octave

GNU Octave

O GNU Octave é uma linguagem interpretada de alto nível que auxilia na solução numérica de problemas lineares e não-lineares, e outros experimentos núméricos.

Site:
http://www.gnu.org/software/octave/

segunda-feira, 31 de outubro de 2011

Visita Técnica - Passeio de Escuna Pela Baía de Vitória - Porto de Tubarão e Porto de Vitória - V SEA FAESA

Certificado de participação na Visita Técnica - Passeio de Escuna Pela Baía de Vitória - Porto de Tubarão e Porto de Vitória - V SEA FAESA.


Participação no V Simpósio de Engenharia Ambiental do Espírito Santo - FAESA

Certificado de participação no V Simpósio de Engenharia Ambiental do Espírito Santo - FAESA.


Apresentação do trabalho técnico "Água Destilada: Produção Racional no LABSAN - UFES" - V SEA FAESA

Certificado de apresentação do trabalho técnico "Água Destilada: Produção Racional no LABSAN - UFES" - V SEA FAESA.


Curso de Representação de Fenômenos Físicos Através da Modelagem Computacional Qualitativa - UFES

Certificado de participação no curso de Representação de Fenômenos Físicos Através da Modelagem Computacional Qualitativa - UFES.


Participação no 23º Congresso da ABES

Certificado de participação no 23º Congresso da ABES.


domingo, 30 de outubro de 2011

First Proficiency Course in English - WIZARD

Certificado de First Proficiency Course in English - WIZARD.


Curso de Delphi 5.0 - Data Control

Certificado de conclusão do curso de Delphi 5.0 - Data Control.


Histórico do Ensino Médio - CEFETES

Histórico do Ensino Médio - CEFETES.


Boletim do Exame Nacional do Ensino Médio (ENEM) 2004

Boletim do Exame Nacional do Ensino Médio (ENEM) 2004.


Curso de IPD, MS-DOS, WINDOWS 95, WORD 97, EXCEL 97, POWER POINT 97, COREL DRAW 7.0, PAGEMAKER 6.5 e INTERNET - Informática FUTURA

Certificado de conclusão do curso de IPD, MS-DOS, WINDOWS 95, WORD 97, EXCEL 97, POWER POINT 97, COREL DRAW 7.0, PAGEMAKER 6.5 e INTERNET - Informática FUTURA.


Curso de Montagem e Manutenção de Computadores - DIGITEN

Certificado de conclusão do curso de Montagem e Manutenção de Computadores - DIGITEN.



Certidão de colação de grau de Tecnólogo em Saneamento Ambiental - IFES

Certidão de colação de grau de Tecnólogo em Saneamento Ambiental - IFES.


Histórico Escolar Final do Curso Superior de Tecnologia em Saneamento Ambiental - IFES

Histórico Escolar Final do Curso Superior de Tecnologia em Saneamento Ambiental  do Instituto Federal do Espírito Santo (IFES).


Curso de Propriedade Intelectual - EaD - SENAI

Certificado de conclusão do curso de Propriedade Intelectual - EaD - SENAI.



Curso de Educação Ambiental - EaD - SENAI

Certificado de conclusão do curso de Educação Ambiental - EaD - SENAI.



Curso de Empreendedorismo - EaD - SENAI

Certificado de conclusão no curso de Empreendedorismo - EaD - SENAI.



Curso de Segurança do Trabalho - EaD - SENAI

Certificado de conclusão do curso de Segurança do Trabalho - EaD - SENAI.



Curso de "Injeção Eletrônica" - SENAI

Certificado de conclusão do curso de Injeção Eletrônica - SENAI.



Curso de Legislação Trabalhista - EaD - SENAI

Certificado de conclusão do curso de Legislação Trabalhista - EaD - SENAI.



Curso de Tecnologia da Informação e Comunicação - EaD - SENAI

Certificado de conclusão do curso de Tecnologia da Informação e Comunicação - EaD - SENAI.



Instrutor voluntário no Centro Educativo-social Escolápio (Serra)

Instrutor voluntário no Centro Educativo-social Escolápio (Serra).


Curso de Economática (3 horas) (FUCAPE)

Certificado de conclusão do Curso de Economática (3 horas) (FUCAPE).




Curso de Economática (2 horas) (FUCAPE)

Certificado de conclusão do Curso de Economática (2 horas) (FUCAPE).


Curso de Lapidação de Pedras (CPT e UOV)

Certificado de conclusão do curso de Lapidação de Pedras (CPT e UOV).



Certificado de participação como ouvinte no curso Systemic Risk Measurement: Techniques and Applications (FUCAPE)

Certificado de participação como ouvinte no curso Systemic Risk Measurement: Techniques and Applications (FUCAPE).


sábado, 15 de outubro de 2011

Crescimento Econômico

Crescimento Econômico
  • Função de Cobb-Douglas:

Y = F(K, L)
onde:
Y = Produção
F = Função
K = Capital
L = Trabalho

  • Solow com Tecnologia (A = variável de tecnologia):
    • Tecnologia "aumentadora de trabalho" (Harrod-neutra):
      • Y = F(K, AL)
    • Tecnologia "aumentadora de capital" (Solow-neutra):
      • Y = F(AK, L)
    • Tecnologia "Hicks-neutra":
      • Y = A . F(K, L)
Ideia do Interesse Egoísta de Adam Smith: "não é da belevolência do açougueiro, do cervejeiro ou do padeiro que esperamos nosso jantar, mas de sua busca de seus próprios interesses" (Smith, 1776 - An Inquiry into the Nature and Causes of the Wealth of Nations).

Modelo de Romer

Y = Kα . (ALy)1-α
onde:
K = estoque de capital
Ly = trabalho
0 < α < 1

LA + Ly = L
onde:
LA = pessoas que trabalham para descobrir novas ideias
Ly = força de trabalho na produção

---
rK + wL = Y
onde:
r = taxa de remuneração do capital
K = capital
w = salário da força de trabalho
L = força de trabalho
Y = produção

---
"Mecanismos como o das patentes são eles próprios ideias, e não há razão para imaginar que as melhores ideias já tenham sido descobertas." (Charles I. Jones)

--
Modelo simples do crescimento e desenvolvimento

Modelo básico

Y = Kα(hL)1-α
onde:
Y = produção
α = intensidade de capital na produção
h = nível de qualificação de um indivíduo
K = capital

""Qualificação" será definida agora como o conjunto de bens intermediários que uma pessoa aprender a utilizar. À medida que as pessoas progridem do uso de enxadas e bois para o uso de agrotóxicos e tratores, a economia cresce." (Charles I. Jones)


Fonte:
Charles I. Jones, 2000 - Stanford University
Introdução à Teoria do Crescimento Econômico

sábado, 8 de outubro de 2011

Apolônia Magalhães de Freitas morre em 30 de Setembro de 2011

Sexta-feira, 30 de Setembro de 2011, 6h, Hospital Dório Silva, Serra - ES. Morre Apolônia Magalhães de Freitas.

Dona Apolônia, Vó Apolônia, morre internada no hospital. Com mais de 80 anos, deixa como legado uma família numerosa.

Deus a acolha na plenitude.

quarta-feira, 5 de outubro de 2011

Definição de Saúde pela WHO (World Health Organization)

Definição de Saúde pela WHO (World Health Organization)

“Saúde é um estado de completo bem-estar físico, mental e social e não meramente a ausência de doença ou enfermidade” (“Health is a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity”).

Fonte:
WHO – Health definition. https://apps.who.int/aboutwho/en/definition.html

domingo, 25 de setembro de 2011

Alcalinidade Total - Método Titulométrico e Método Potenciométrico

Alcalinidade Total


A alcalinidade total de uma água é dada pelo somatório das diferentes formas de alcalinidade existentes, ou seja, é a concentração de hidróxidos, carbonatos e bicarbonatos, expressa em termos de Carbonato de Cálcio. Pode-se dizer que a alcalinidade mede a capacidade da água em neutralizar os ácidos, pois todos os íons causadores da alcalinidade têm característica básica. A medida da alcalinidade é de fundamental importância durante o processo de tratamento de água, pois, é em função do seu teor que se estabelece a dosagem dos produtos químicos utilizados/agentes floculantes. As concentrações dos íons também informam sobre as características corrosivas ou incrustantes da água analisada.

A alcalinidade pode existir de três formas (apenas uma de cada vez), segundo as seguintes condições:

  • pH > 9,4 → hidróxidos e carbonatos
  • 8,3 < pH < 9,4 → carbonatos e bicarbonatos
  • 4,4 < pH < 8,3 → apenas bicarbonatos

Só existe uma das formas acima por vez devido à reação química do íon bicarbonato com o íon hidróxido. O íon bicarbonato age como se fosse um ácido fraco na presença de uma base forte:
HCO3- + OH- → H2O + CO32-

Para quantificar os íons OH- e CO32-, o indicador mais utilizado é a fenolftaleína, com faixa de pH de atuação de 8,3 a 9,8:
  • Fenolftaleína:
    • pH < 8,3 → sem coloração / incolor
    • pH > 8,3 → cor rosa
Para quantificar os íons HCO3-, é possível utilizar os seguintes indicadores:
  • Metilorange:
    • pH de atuação varia de 3,1 a 4,6
      • pH > 3,1 → coloração vermelha
      • pH < 3,1 → cor laranja
  • Vermelho de metila:
    • pH de atuação varia de 4,4 a 6,2
      • pH > 4,4 → coloração amarela
      • pH < 4,4 → cor vermelha
  • Indicador misto:
    • Constituído de vermelho de metila e de verde de bromocresol, solubilizados em álcool etílico ou isopropílico, que passa da cor azul para a cor salmão.
Se houver traços de cloro na água a coloração dos indicadores será influenciada. Como forma de inativação do cloro residual é necessário utilizar uma solução de tiossulfato de sódio.

Os indicadores adicionados à amostra podem indicar a presença ou não de um ou mais tipos de alcalinidade.
  • Alcalinidade à Fenolftaleína (F):
Ao adicionarmos fenolftaleína à amostra, uma coloração rosa (ou seja, pH > 8,3) pode significar a presença de hidróxido ou de carbonato ou hidróxido/carbonato simultaneamente na amostra. A alcalinidade à fenolftaleína pode ser quantificada através da adição quantitativa de um ácido de concentração conhecida à amostra até a neutralização da alcalinidade, quando ocorrerá a mudança da cor rosa para incolor. No caso específico da fenolftaleína, caso a amostra se mantenha incolor após a adição do indicador, pode-se dizer que a alcalinidade à fenolftaleína é igual a zero.
  • Alcalinidade ao Metilorange (M):
A alcalinidade ao Metilorange deve ser verificada se a amostra com o indicador apresentar uma coloração amarela (indicadora de pH acima de 4,4) através de titulação com o mesmo ácido usado na alcalinidade à Fenolftaleína. Caso a coloração apresentada seja alaranjada ou avermelhada, a alcalinidade ao Metilorange será zero.

  • Volume Total (T):
T = Volume total = F + M

A adição do ácido irá ocasionar primeiramente reações com os íons mais básicos e em seguida com os mais fracos, ou seja, primeiro reagirá o hidróxido, depois o carbonato e logo após o bicarbonato. As reações serão:
  • H2SO4 + 2 OH- ↔ 2 H2O + SO42-
  • H2SO4 + 2 CO32- ↔ 2 HCO3- + SO42-
  • H2SO4 + 2 HCO3- ↔ 2 H2O + SO42- + 2 CO2
Como o carbonato não se neutraliza de imediato, ele passa para a forma de bicarbonato (HCO3-) para depois chegar a CO2. Metade da concentração do carbonato é titulada com a Fenolftaleína, sendo a outra metade titulada com Metilorange.
A alcalinidade em função dos íons pode ser obtida através das relações abaixo:
  • F = 0:
    • Hidróxidos → 0
    • Carbonato → 0
    • Bicarbonato → T
  • F < ½ . T:
    • Hidróxidos → 0
    • Carbonato → 2 . F
    • Bicarbonato → T – 2 . F
  • F = ½ . T:
    • Hidróxidos → 0
    • Carbonato → 2 . F
    • Bicarbonato → 0
  • F > ½ . T:
    • Hidróxidos → 2F - T
    • Carbonato → 2 (T – F)
    • Bicarbonato → 0
  • F = T
    • Hidróxidos → T
    • Carbonato → 0
    • Bicarbonato → 0

Normalmente as águas superficiais possuem alcalinidade natural em concentração suficiente para reagir com o sulfato de alumínio nos processos de tratamento. Quando a alcalinidade é muito baixa ou inexistente há a necessidade de se provocar uma alcalinidade artificial com aplicação de substâncias alcalinas tal como cal hidratada ou Barrilha (carbonato de sódio) para que o objetivo seja alcançado. Quando a alcalinidade é muito elevada, procede-se ao contrário, acidificando-se a água até que se obtenha um teor de alcalinidade suficiente para reagir com o sulfato de alumínio ou outro produto utilizado no tratamento da água.

Método de Determinação
Titulação com Ácido Sulfúrico

Material necessário:

a) pipeta volumétrica de 50 ml;
b) frasco Erlenmeyer de 250 ml;
c) bureta de 50 ml;
d) fenolftaleína;
e) indicador metilorange;
f) mistura Indicadora de Verde de Bromocresol/Vermelho de Metila;
g) solução de Ácido Sulfúrico 0,02 N;
h) solução de Tiossulfato de Sódio 0,1 N.

Técnica

a) tomar 50 ml da amostra e colocar no Erlenmeyer;
b) adicionar 3 gotas da solução indicadora de verde de bromocresol/vermelho de metila;
c) titular com a Solução de Ácido Sulfúrico 0,02 N até a mudança da cor azul-esverdeada para róseo;
d) anotar o volume total de H2SO4 gasto (V) em ml. 


Cálculo

Alcalinidade total em mg/L de CaCO3 = V x 20

Notas

1. Usar 0,05 ml (1 gota)  da solução de Tiossulfato de Sódio 0,1 N, caso a amostra apresente cloro residual livre;    
2. Utilizar esta técnica na ausência de alcalinidade à fenolftaleína;    
3. Caso haja alcalinidade à Fenolftaleína, adicionar, antes da mistura indicadora de verde de bromocresol/vermelho de metila 3 gotas de Fenolftaleína e titule com H2SO4 0,02N até desaparecer a cor rósea formada. Em seguida continuar no passo b da técnica;     
4. A alcalinidade à Fenolftaleína só poderá ocorrer se o pH da amostra for maior que 8,2; 
5. Na impossibilidade de conseguir a mistura indicadora de verde de bromocresol/vermelho de
metila, usar o indicador de metilorange. Nesse caso o ponto de viragem no passo 3 da técnica será de amarelo para alaranjado;   
6. O ponto de viragem quando se usa o indicador verde de bromocresol/vermelho de metila é mais nítido do que quando se usa metilorange;
7. A fórmula acima é para ser utilizada quando se usa uma amostra de 50 ml. Quando for usado 100 ml de amostra, o volume (V) passará a ser multiplicado por 10;     
8. Fc – Fator de correção da solução titulante.


Fluxograma da Análise


Reagentes para Alcalinidade

Solução de ácido sulfúrico 0,02 N

Para preparar esta solução, faz-se primeiro uma solução 0,1N do seguinte modo:

a) transferir, com pipeta, lentamente, 2,8mL de ácido sulfúrico concentrado (96% d=1,84) para um balão volumétrico de 1000mL contendo cerca de 500mL de água destilada;
b) completar o volume, até a marca, com água destilada e agitar;
c) desta solução, medir, com pipeta volumétrica, 200mL e transferir para um balão volumétrico de 1000mL e completar o volume com água destilada. Esta solução é aproximadamente 0,02 N.

Solução de carbonato de sódio 0,02 N

Para preparar a solução de carbonato de sódio 0,02 N secar 1,5 a 2,0 gramas de Na2CO3 grau padrão primário, a 250ºC por quatro horas. Esfriar em dessecador. Em seguida, pesar 1,060g e dissolver em 250mL de água destilada e completar o volume para 1000 mL com água destilada em balão volumétrico.

Padronização da solução

Colocar 50mL de uma solução de carbonato de Sódio 0,02N em um frasco Erlenmeyer de 250mL e adicionar 4 gotas do indicador metilorange. Titular com H2SO4 0,02N até a viragem do indicador para leve coloração avermelhada. Anotar o volume do ácido gasto.

Para calcular a normalidade correta, use a seguinte fórmula:
N = N’.V’ / V

onde:
N = normalidade do H2SO4 desejada;
V = volume do ácido gasto na titulação;
N’ = normalidade do carbonato de sódio;
V’ = volume do carbonato de sódio usado.
1 mL de H2SO4 0,02 N = 1,0mg de CaCO3.

Solução de tiossulfato de sódio 0,1 N

Pesar exatamente 25,0 gramas de Na2S2O3.5H2O e dissolver em um pouco de água destilada e completar o volume para 1000mL em balão volumétrico.

Indicador metilorange

Pesar 0,100 gramas de metilorange e dissolver em 200mL de água destilada.

Fenolftaleina

a) dissolver 1 grama de fenolftaleína em um pouco de água destilada e diluir a 200 mL.
b) adicionar gotas de NaOH 0,02 N até o aparecimento de leve coloração cor-de-rosa.

Mistura indicadora de verde de bromocresol/vermelho de metila

Pesar 20 mg de vermelho de metila e 100 mg de verde de bromocresol e dissolver em 100 mL de água destilada ou álcool etílico a 95%.



Método de Determinação
Potenciométrico

Unidade de medida

A alcalinidade é expressa em termos de CaCO3.

Sobre o método de titulação potenciométrica

A titulação potenciométrica pode ser utilizada para a análise de alcalinidade para concentrações a partir de 1,0mg CaCO3/L.

Preparação da amostra:

Caso a amostra seja clorada, é necessário inativar o cloro residual com a adição de 0,10mL (duas gotas) de solução de tiossulfato de sódio 0,1M para cada 100mL de amostra.

Possíveis interferências:

A análise de alcalinidade pode sofrer interferências devido a:
  • sabões, materiais oleosos, sólidos suspensos e precipitados podem retardar a resposta do eletrodo;
  • amostras muito saturadas de CaCO3 podem apresentar precipitação, o que altera o resultado da análise.

Titulação potenciométrica:
  • Para amostras com alcalinidade > 20mg CaCO3/L:

1 - colocar 100mL de amostra (ou um volume adequado para não se gastar mais que 50mL do ácido titulante) em um Becker de 250mL. Para preservar a amostra, somente retirá-la do frasco de coleta no momento da análise. A amostra não deve ser filtrada, diluída, concentrada, agitada ou alterada;
2 - esperar a amostra chegar à temperatura ambiente e registrar o pH;
3 - realizar a titulação da amostra (utilizando uma bureta) com ácido sulfúrico ou ácido clorídrico 0,02N até baixar o pH para 8,3. A amostra deve ser agitada com uma barra magnética no agitador magnético. O titulante deve ser adicionado aos poucos, para a leitura do pH ser estável. Como o pH 8,3 é o pH de viragem da Fenolftaleína, o volume de titulante gasto até a amostra atingir o pH 8,3 deve ser anotado como VF. Caso a amostra tenha pH < 8,3 deve-se pular o registro do VF, visto que a alcalinidade da amostra à Fenolftaleína é igual a zero;
4 - a titulação potenciométrica deve prosseguir até que o pH esteja entre 4,3 e 4,9, conforme a indicação abaixo:
  • Alcalinidade total:
    • 30mg CaCO3/L → pH = 4,9
    • 150 mg CaCO3/L → pH = 4,6
    • 500 mg CaCO3/L → pH = 4,3
    • Silicatos, fosfatos, existentes ou esperados, análises rotineiras ou automáticas e despejos → pH = 4,5
5 - registrar o volume total de titulante gasto (VT).

Caso a alcalinidade encontrada seja menor que 20mg CaCO3/L, a alcalinidade deverá ser determinada conforme o próximo tópico.

  • Para amostras com alcalinidade < 20mg CaCO3/L:


1 – seguir os passos 1, 2 e 3 descritos no item anterior;
2 – prosseguir a titulação até que o pH fique no intervalo 4,3 < pH < 4,7. Anotar o volume de ácido titulante gasto (V1).
3 – baixar o pH em 0,3 unidade com o ácido titulante e registrar o volume gasto (V2).



Resultados

Alcalinidadeà Fenolftaleína ou total superior a 20mg de CaCO3/L:

mg CaCO3/L = (V . N . 50000) / Vam

Onde:
V = volume do ácido titulante gasto até o pH predeterminado (mL)
  • VF = volume para alcalinidade a Fenolftaleína
  • VT = Volume para alcalinidade total
N = normalidade do ácido titulante
Vam = volume da amostra (em mL)

Alcalinidade total inferior a 20mg de CaCO3/L:

mg CaCO3/L = [(2V1 – V2) . N . 50000] / Vam

Onde:
V1 = volume (mL) do ácido titulante gasto até o pH atingir a faixa de 4,3 a 4,7
V2 = volume (mL) do ácido titulante gasto até o pH reduzir mais 0,3 unidade
N = normalidade do ácido titulante
Vam = volume da amostra (em mL)

Observação: o pH e a temperatura devem ser registrados.


Referências:
  • Manual Prático de Análise de Água - FUNASA - Manual de Bolso
  • MACÊDO, Jorge Antonio Barros de. Métodos Laboratoriais de Análises Físico-Químicas e Microbiológicas. 3. ed. Belo Horizonte: CRQ-MG, 2005. 601 p.
  • NBR 13736 – Água – Determinação de alcalinidade – Métodos potenciométrico e titulométrico. ABNT – Associação Brasileira de Normas Técnicas. Rio de Janeiro, RJ. Nov. 1996. 4p.

----